LEADER 00768nam0-22002891i-450- 001 990007511590403321 005 20050929152930.0 035 $a000751159 035 $aFED01000751159 035 $a(Aleph)000751159FED01 035 $a000751159 100 $a20030814d1931----km-y0itay50------ba 101 0 $aita 200 1 $aRavenna$fSanti Muratori 210 $aFirenze$cNemi$d[1931] 215 $a70 p.$d21 cm 225 1 $aVisioni spirituali d'Italia 300 $aStampati soli 100 esempl. 610 0 $aEmilia Romagna$aRavenna 700 1$aMuratori,$bSanti$0210465 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990007511590403321 952 $aD'-02-035$bIst.2606$fILFGE 959 $aILFGE 996 $aRavenna$9683367 997 $aUNINA LEADER 01185nam0-22003971i-450 001 990003762310403321 005 20191016115059.0 010 $a0-444-86196-3 035 $a000376231 035 $aFED01000376231 035 $a(Aleph)000376231FED01 035 $a000376231 100 $a20030910d1982----km-y0itay50------ba 101 0 $aeng 102 $aNL 105 $ay-------001yy 200 1 $aNonparametric statistical inference$fedited by B. V. Gnedenko, M. L. Puri and I. Vincze 210 $aAmsterdam$cNorth-Holland$dc1982 215 $av.$d24 cm 225 1 $aColloquia mathematica Societatis János Bolyai$v32 300 $aContiene riferimenti bibl. 307 $a2.: p. 467-909 610 0 $aStatistica non parametrica 610 0 $aInferenza statistica 676 $a519.54 702 1$aGnedenko,$bBoris Vladimirovic$f<1912-1995> 702 1$aPuri,$bMadan Lal 702 1$aVincze,$bIstvan 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003762310403321 952 $aA / GNE 1,1$b3230/1$fBFS 952 $aA / GNE 1,2$b3230/2$fbfs 959 $aBFS 996 $aNonparametric statistical inference$9510243 997 $aUNINA LEADER 02726nam 22006612 450 001 9910791903003321 005 20151005020623.0 010 $a1-107-22245-1 010 $a1-139-07659-0 010 $a9786613111180 010 $a1-139-07087-8 010 $a1-139-08114-4 010 $a1-139-08341-4 010 $a1-139-07887-9 010 $a1-283-11118-7 010 $a0-511-81311-2 035 $a(CKB)2560000000092582 035 $a(EBL)691994 035 $a(OCoLC)781338540 035 $a(SSID)ssj0000522754 035 $a(PQKBManifestationID)11322357 035 $a(PQKBTitleCode)TC0000522754 035 $a(PQKBWorkID)10538922 035 $a(PQKB)10810325 035 $a(UkCbUP)CR9780511813115 035 $a(MiAaPQ)EBC691994 035 $a(Au-PeEL)EBL691994 035 $a(CaPaEBR)ebr10469136 035 $a(CaONFJC)MIL311118 035 $a(PPN)189714832 035 $a(EXLCZ)992560000000092582 100 $a20141103d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFrom Measures to Ito? Integrals /$fEkkehard Kopp$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (vii, 120 pages) $cdigital, PDF file(s) 225 1 $aAIMS library series 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-40086-4 320 $aIncludes bibliographical references and index. 327 $aProbability and measure -- Measures and distribution functions -- Measurable functions/random variables -- Integration and expectation -- Lp-spaces and conditional expectation -- Discrete-time martingales -- Brownian motion -- Stochastic integrals. 330 $aFrom Measures to Ito? Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Ito? integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Ito? calculus. 410 0$aAIMS library series. 606 $aMeasure theory$vTextbooks 615 0$aMeasure theory 676 $a515/.42 686 $aMAT034000$2bisacsh 700 $aKopp$b P. E.$f1944-$056444 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910791903003321 996 $aFrom Measures to Ito? Integrals$93760688 997 $aUNINA