LEADER 00821nam0-22002891i-450- 001 990006322130403321 005 19980601 035 $a000632213 035 $aFED01000632213 035 $a(Aleph)000632213FED01 035 $a000632213 100 $a19980601d1934----km-y0itay50------ba 105 $a--------00-yy 200 1 $a<>problème mondial du blé$eprojet de solution$fPaul De Hevesy ; préface de Henry Bérenger. 210 $aParis$cFelix Alcan$d1934 215 $aVI,, 293 p.$d24 cm 676 $a338.19 700 1$aHevesy,$bPaul : de$0238173 702 1$aBerenger,$bHenry 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006322130403321 952 $aXV H 229$b28027$fFGBC 959 $aFGBC 996 $aProblème mondial du blé$9655406 997 $aUNINA DB $aGIU01 LEADER 02220nam 22005172 450 001 9910791744303321 005 20151002020706.0 010 $a0-88385-922-X 035 $a(CKB)2560000000081416 035 $a(SSID)ssj0000667039 035 $a(PQKBManifestationID)11378768 035 $a(PQKBTitleCode)TC0000667039 035 $a(PQKBWorkID)10673764 035 $a(PQKB)10713492 035 $a(UkCbUP)CR9780883859223 035 $a(MiAaPQ)EBC3330385 035 $a(Au-PeEL)EBL3330385 035 $a(CaPaEBR)ebr10729356 035 $a(OCoLC)929120472 035 $a(RPAM)1694420 035 $a(EXLCZ)992560000000081416 100 $a20111006d1961|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometric inequalities /$fby Nicholas D. Kazarinoff$b[electronic resource] 210 1$aWashington :$cMathematical Association of America,$d1961. 215 $a1 online resource (132 pages) $cdigital, PDF file(s) 225 0 $aAnneli Lax New Mathematical Library ;$vno. 4 300 $aTitle from publisher's bibliographic system (viewed on 02 Oct 2015). 311 $a0-88385-604-2 330 $aAnybody who liked their first geometry course (and some who did not) will enjoy the simply stated geometric problems about maximum and minimum lengths and areas in this book. Many of these already fascinated the Greeks, for example, the problem of enclosing the largest possible area by a fence of given length, and some were solved long ago; but others remain unsolved even today. Some of the solutions of the problems posed in this book, for example the problem of inscribing a triangle of smallest perimeter into a given triangle, were supplied by world famous mathematicians, other by high school students. 606 $aGeometry, Plane 606 $aInequalities (Mathematics) 615 0$aGeometry, Plane. 615 0$aInequalities (Mathematics) 676 $a516.17 700 $aKazarinoff$b Nicholas D.$041085 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910791744303321 996 $aGeometric inequalities$981658 997 $aUNINA