LEADER 02356nam 2200565 a 450 001 9910791345303321 005 20230725015506.0 010 $a1-282-63390-2 010 $a9786612633904 010 $a90-485-1230-1 035 $a(CKB)2560000000011872 035 $a(EBL)542537 035 $a(OCoLC)645097316 035 $a(SSID)ssj0000430499 035 $a(PQKBManifestationID)12140200 035 $a(PQKBTitleCode)TC0000430499 035 $a(PQKBWorkID)10456155 035 $a(PQKB)10812368 035 $a(MiAaPQ)EBC542537 035 $a(Au-PeEL)EBL542537 035 $a(CaPaEBR)ebr10397498 035 $a(CaONFJC)MIL263390 035 $a(EXLCZ)992560000000011872 100 $a20100730d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aValue-based planning for teams of agents in stochastic partially observable environments$b[electronic resource] /$fdoor Frans Adriaan Oliehoek 210 $a[Amsterdam] $cAmsterdam University Press$d2010 215 $a1 online resource (222 p.) 225 1 $aUvA proefschriften 300 $aDescription based upon print version of record. 311 $a90-5629-610-8 320 $aIncludes bibliographical references (p. 197-211). 327 $aIntroduction; Decision-Theoretic Planning for Teams of Agents; Optimal Value Functions for Dec-POMDPs; Approximate Value Functions & Heuristic Policy Search; Factored Dec-POMDPs: Exploiting Locality of Interaction; Lossless Clustering of Histories; Conclusions and Discussion; Summary; Samenvatting; Problem Specifications; Immediate Reward Value Function Formulations; Formalization of Regression to Factored Q-Value Functions; Proofs; Bibliography; Acknowledgments 330 $aIn this thesis decision-making problems are formalized using a stochastic discrete-time model called decentralized partially observable Markov decision process (Dec-POMDP). 410 0$aUvA proefschriften 606 $aMathematics 615 0$aMathematics. 676 $a510 700 $aOliehoek$b Frans A$0950734 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910791345303321 996 $aValue-based planning for teams of agents in stochastic partially observable environments$93782200 997 $aUNINA