LEADER 07435nam 2201945 450 001 9910790630403321 005 20200520144314.0 010 $a0-691-14172-X 010 $a1-4008-4890-3 024 7 $a10.1515/9781400848904 035 $a(CKB)2550000001136158 035 $a(EBL)1458382 035 $a(SSID)ssj0001048105 035 $a(PQKBManifestationID)12409135 035 $a(PQKBTitleCode)TC0001048105 035 $a(PQKBWorkID)10996121 035 $a(PQKB)11267291 035 $a(StDuBDS)EDZ0000159526 035 $a(DE-B1597)453967 035 $a(OCoLC)1013956161 035 $a(OCoLC)979594086 035 $a(DE-B1597)9781400848904 035 $a(Au-PeEL)EBL1458382 035 $a(CaPaEBR)ebr10783690 035 $a(CaONFJC)MIL535861 035 $a(OCoLC)862385885 035 $a(MiAaPQ)EBC1458382 035 $a(EXLCZ)992550000001136158 100 $a20130502h20142014 uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to modeling convection in planets and stars $emagnetic field, density stratification, rotation /$fGary A. Glatzmaier 205 $aCourse Book 210 1$aPrinceton :$cPrinceton University Press,$d[2014] 210 4$dİ2014 215 $a1 online resource (343 p.) 225 0 $aPrinceton Series in Astrophysics ;$v24 225 0$aPrinceton series in astrophysics 300 $aDescription based upon print version of record. 311 $a0-691-14173-8 311 $a1-306-04610-6 320 $aIncludes bibliographical references and index. 327 $apart I. The fundamentals -- part II. Additional numerical methods -- part III. Additional physics. 330 $a"This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accurate numerical methods and more realistic geometries in two and three dimensions. In the third part of the book, Glatzmaier demonstrates how to incorporate more sophisticated physics, including the effects of magnetic field, density stratification, and rotation.Featuring numerous exercises throughout, this is an ideal textbook for students and an essential resource for researchers. Describes how to create codes that simulate the internal dynamics of planets and stars Builds on basic concepts and simple methods Shows how to improve the efficiency and accuracy of the numerical methods Describes more relevant geometries and boundary conditions Demonstrates how to incorporate more sophisticated physics "--$cProvided by publisher. 410 0$aPrinceton Series in Astrophysics 606 $aConvection (Astrophysics)$xComputer simulation 606 $aConvection (Astrophysics)$xMathematical models 606 $aPlanets$xAtmospheres 606 $aStars$xAtmospheres 610 $a2.5D spherical-shell. 610 $a3D cartesian box. 610 $a3D spherical-shell. 610 $aAdams-Bashforth time integration scheme. 610 $aBoussinesq approximation. 610 $aChebyshev?ourier method. 610 $aCrank?icolson scheme. 610 $aFourier expansions. 610 $aFourier mode. 610 $aFourier transforms. 610 $aGalerkin method. 610 $aNusselt number. 610 $aPoisson equation. 610 $aPrandtl number. 610 $aRayleigh number. 610 $aRayleigh?nard convection. 610 $aReynolds number. 610 $aRunge?utta scheme. 610 $aadvection. 610 $aanelastic approximation. 610 $aanelastic model. 610 $aarbitrary background field. 610 $aaspect ratio. 610 $aboundary conditions. 610 $aboundary layers. 610 $acartesian box geometry. 610 $acomputer analysis. 610 $acomputer code. 610 $acomputer graphics. 610 $acomputer simulations. 610 $aconservation equations. 610 $aconvection. 610 $acoordinate mapping. 610 $acritical Rayleigh number. 610 $adensity stratification. 610 $adiffusion. 610 $adispersion relation. 610 $adouble-diffusive convection. 610 $aenergy. 610 $aentropy. 610 $afinite-amplitude simulations. 610 $afinite-difference method. 610 $afluid dynamics. 610 $afluid flow. 610 $afluid velocity. 610 $ahorizontal background field. 610 $ainfinite Prandtl number. 610 $ainternal gravity waves. 610 $akinetic energy spectrum. 610 $alinear code. 610 $alinear dispersion relation. 610 $alinear equations. 610 $alinear model. 610 $alinear stability analysis. 610 $alinear stability problem. 610 $amagnetic field generation. 610 $amagnetic field. 610 $amagneto-gravity waves. 610 $amagnetoconvection. 610 $amagnetohydrodynamic equations. 610 $amagnetohydrodynamics. 610 $amantle convection. 610 $amarginal stability. 610 $amass. 610 $amomentum. 610 $anonlinear code. 610 $anonlinear convection. 610 $anonlinear evolution. 610 $anonlinear simulations. 610 $anonlinear terms. 610 $anonuniform grid. 610 $anumerical code. 610 $anumerical method. 610 $anumerical model. 610 $aoscillating instability. 610 $aparallel code. 610 $aparallel processing. 610 $apostprocessing code. 610 $apredictor-corrector scheme. 610 $apressure. 610 $arotation. 610 $asalt-fingering instability. 610 $asemi-implicit scheme. 610 $asemiconvection instability. 610 $aspatial discretization. 610 $aspatial resolution. 610 $aspectral method. 610 $aspectral space. 610 $aspherical harmonic expansions. 610 $astaircase profile. 610 $atemperature profile. 610 $atemperature. 610 $athermal convection. 610 $athermal diffusion. 610 $athermal stratification. 610 $atime integration schemes. 610 $avorticity-streamfunction formulation. 610 $avorticity. 610 $awave energy. 615 0$aConvection (Astrophysics)$xComputer simulation. 615 0$aConvection (Astrophysics)$xMathematical models. 615 0$aPlanets$xAtmospheres. 615 0$aStars$xAtmospheres. 676 $a523.4 686 $aUS 3500$2rvk 700 $aGlatzmaier$b Gary A.$f1949-$01487913 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910790630403321 996 $aIntroduction to modeling convection in planets and stars$93708039 997 $aUNINA