LEADER 03470nam 22007212 450 001 9910790616003321 005 20151005020622.0 010 $a1-107-42423-2 010 $a1-139-89113-8 010 $a1-107-42195-0 010 $a1-107-41924-7 010 $a1-107-41660-4 010 $a1-139-20866-7 010 $a1-107-42047-4 010 $a1-107-41792-9 035 $a(CKB)2550000001138777 035 $a(EBL)1394548 035 $a(OCoLC)863821791 035 $a(SSID)ssj0001058917 035 $a(PQKBManifestationID)12458504 035 $a(PQKBTitleCode)TC0001058917 035 $a(PQKBWorkID)11070788 035 $a(PQKB)11165079 035 $a(UkCbUP)CR9781139208666 035 $a(Au-PeEL)EBL1394548 035 $a(CaPaEBR)ebr10774116 035 $a(CaONFJC)MIL538447 035 $a(MiAaPQ)EBC1394548 035 $a(PPN)26129587X 035 $a(EXLCZ)992550000001138777 100 $a20111208d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCanonical Ramsey theory on Polish spaces /$fVladimir Kanovei, Marcin Sabok, Jindr?ich Zapletal$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (viii, 269 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v202 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-02685-7 311 $a1-306-07196-8 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Background facts -- Analytic equivalence relations and models of set theory --Classes of equivalence relations -- Games and the Silver property -- The game ideals -- Benchmark equivalence relations -- Ramsey-type ideals -- Product-type ideals -- The countable support iteration ideals. 330 $aThis book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research. 410 0$aCambridge tracts in mathematics ;$v202. 606 $aSet theory 606 $aRamsey theory 606 $aPolish spaces (Mathematics) 615 0$aSet theory. 615 0$aRamsey theory. 615 0$aPolish spaces (Mathematics) 676 $a511.322 700 $aKanovei?$b V. G$g(Vladimir Grigor?evich),$0504970 702 $aSabok$b Marcin 702 $aZapletal$b Jindr?ich$f1969- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910790616003321 996 $aCanonical Ramsey theory on Polish spaces$93717690 997 $aUNINA