LEADER 05401nam 2200661 a 450 001 9910790309203321 005 20230801223817.0 010 $a1-281-60347-3 010 $a9786613784162 010 $a1-84816-802-0 035 $a(CKB)2670000000229965 035 $a(EBL)982501 035 $a(OCoLC)804661858 035 $a(SSID)ssj0000695464 035 $a(PQKBManifestationID)12330145 035 $a(PQKBTitleCode)TC0000695464 035 $a(PQKBWorkID)10678793 035 $a(PQKB)10875705 035 $a(MiAaPQ)EBC982501 035 $a(WSP)00002710 035 $a(Au-PeEL)EBL982501 035 $a(CaPaEBR)ebr10583630 035 $a(CaONFJC)MIL378416 035 $a(EXLCZ)992670000000229965 100 $a20120808d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aExtended-nanofluidic systems for chemistry and biotechnology$b[electronic resource] /$fKitamori Takehiko ... [et al.] 210 $aLondon $cImperial College Press$d2012 215 $a1 online resource (187 p.) 300 $aDescription based upon print version of record. 311 $a1-84816-801-2 320 $aIncludes bibliographical references and index. 327 $aCONTENTS; Chapter 1. Introduction; References; Chapter 2. Microchemical Systems; References; Chapter 3. Fundamental Technology: Nanofabrication Methods; 3.1. Top-Down Fabrication; 3.1.1. Introduction; 3.1.2. Bulk nanomachining techniques; 3.1.2.1. Combination of lithography and wet etching; 3.1.2.2. Combination of lithography and dry etching; 3.1.2.3. Other lithographic techniques; 3.1.2.4. Direct nanofabrication; 3.1.3. Surface machining techniques; 3.1.3.1. Utilization of polysilicon as a sacrificial material; 3.1.3.2. Utilization of metals and polymers as sacrificial materials 327 $a3.1.4. Imprinting and embossing nanofabrication techniques3.1.5. New strategies of nanofabrication; 3.1.5.1. Non-lithographic techniques; 3.1.5.2. Hybrid-material techniques; 3.1.6. Combination of lift-off and lithography; 3.2. Local Surface Modification; 3.2.1. Modification using VUV; 3.2.2. Modification using an electron beam; 3.2.3. Modification using photochemical reaction; 3.3. Bonding; 3.3.1. Introduction; 3.3.2. Wafer bond characterization methods; 3.3.3. Wafer direct bonding; 3.3.4. Wafer direct bonding mechanism; 3.3.5. Surface requirements for wafer direct bonding 327 $a3.3.6. Low temperature direct bonding by surface plasma activation3.3.7. Anodic bonding; References; Chapter 4. Fundamental Technology: Fluidic Control Methods; 4.1. Basic Theory; 4.2. Pressure-Driven Flow; 4.3. Shear-Driven Flow; 4.4. Electrokinetically-Driven Flow; 4.5. Conclusion and Outlook; References; Chapter 5. Fundamental Technology: Detection Methods; 5.1. Single Molecule Detection Methods; 5.1.1. Optical detection methods; 5.1.2. Electrochemical methods; 5.2. Measurement of Fluidic Properties; 5.2.1. Nonintrusive flow measurement techniques 327 $a5.2.1.1. Streaming potential/current measurement in pressure-driven flows5.2.1.2. Current monitoring in electroosmotic flow; 5.2.2. Optical flow imaging techniques using a tracer; 5.2.2.1. Properties of flow tracers; 5.2.2.2. Scalar image velocimetry; 5.2.2.3. Nanoparticle image velocimetry; 5.2.2.4. Laser-induced fluorescence photobleaching anemometer with stimulated emission depletion; References; Chapter 6. Basic Nanoscience; 6.1. Liquid Properties; 6.1.1. Introduction; 6.1.2. Viscosities of liquids confined in extended nanospaces; 6.1.3. Electrical conductivity in extended nanospaces 327 $a6.1.4. Streaming current/potential in extended nanospaces6.1.5. Ion transport in extended nanospaces; 6.1.6. Gas/liquid phase transition phenomena in extended nanospaces; 6.1.7. Structures and dynamics of liquids confined in extended nanospaces; 6.2. Chemical Reaction; 6.2.1. Enzymatic reaction; 6.2.2. Keto-enol tautomeric equilibrium; 6.2.3. Nanoparticle synthesis; 6.2.4. Nano DNA hybridization; 6.2.5. Nano redox reaction; 6.3. Liquid Properties in Intercellular Space; References; Chapter 7. Application to Chemistry and Biotechnology; 7.1. Separation; 7.1.1. Separation by electrophoresis 327 $a7.1.2. Separation by pressure-driven flow or shear-driven flow 330 $aFor the past decade, new research fields utilizing microfluidics have been formed. General micro-integration methods were proposed, and the supporting fundamental technologies were widely developed. These methodologies have made various applications in the fields of analytical and chemical synthesis, and their superior performances such as rapid, simple, and high efficient processing have been proved. Recently, the space is further downscaling to 101-103nm scale (we call the space extended-nano space). The extended-nano space located between the conventional nanotechnology (100-101nm) and micr 606 $aNanofluids 606 $aMicrofluidics 606 $aFluidic devices 615 0$aNanofluids. 615 0$aMicrofluidics. 615 0$aFluidic devices. 676 $a620.106 701 $aTakehiko$b Kitamori$01508513 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910790309203321 996 $aExtended-nanofluidic systems for chemistry and biotechnology$93739914 997 $aUNINA