LEADER 02606nam 2200625 a 450 001 9910144587503321 005 20210208181844.0 010 $a1-118-27682-5 010 $a1-283-40397-8 010 $a9786613403971 010 $a1-118-27673-6 010 $a0-470-17237-1 010 $a0-470-36198-0 035 $a(CKB)1000000000377035 035 $a(EBL)792558 035 $a(OCoLC)768731841 035 $a(SSID)ssj0000354423 035 $a(PQKBManifestationID)11212584 035 $a(PQKBTitleCode)TC0000354423 035 $a(PQKBWorkID)10313956 035 $a(PQKB)11427343 035 $a(MiAaPQ)EBC792558 035 $a(EXLCZ)991000000000377035 100 $a20050701d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aManaging the unknown$b[electronic resource] $ea new approach to managing high uncertainty and risk in projects /$fChristoph H. Loch, Arnoud De Meyer, Michael T. Pich 210 $aHoboken, N.J. $cJohn Wiley$dc2006 215 $a1 online resource (306 p.) 300 $aDescription based upon print version of record. 311 $a0-471-69305-7 320 $aIncludes bibliographical references and index. 327 $apt. 1. A new look at project risk management -- pt. 2. Managing the unknown -- pt. 3. Putting selectionism and learning into practice -- pt. 4. Managing the unknown : the role of senior management. 330 $aManaging the Unknown offers a new way of looking at the problem of managing projects in novel and unknown environments. From Europe's leading business school, this book shows how to manage two fundamental approaches that, in combination, offer the possibility of coping with unforeseen influences that inevitably arise in novel projects:* Trial-and-Error Learning allows for redefining the plan and the project as the project unfolds* Selectionism pursues multiple, independent trials in order to pick the best one at the endManaging the Unknown offers expert guidelines to the specif 606 $aProject management 606 $aRisk management 608 $aElectronic books. 615 0$aProject management. 615 0$aRisk management. 676 $a658.4/04 676 $a658.404 686 $a85.03$2bcl 700 $aLoch$b C$g(Christoph)$0984006 701 $aMeyer$b Arnoud de$0984007 701 $aPich$b Michael T$0984008 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144587503321 996 $aManaging the unknown$92246822 997 $aUNINA LEADER 04820nam 22008172 450 001 9910790280403321 005 20221019151412.0 010 $a9781139012843 010 $a1-107-22971-5 010 $a1-280-39333-5 010 $a1-139-22286-4 010 $a9786613571250 010 $a1-139-01284-3 010 $a1-139-21806-9 010 $a1-139-21497-7 010 $a1-139-22458-1 010 $a1-139-22114-0 024 8 $a9786613571250 035 $a(CKB)2670000000177937 035 $a(EBL)866868 035 $a(SSID)ssj0000638367 035 $a(PQKBManifestationID)11354307 035 $a(PQKBTitleCode)TC0000638367 035 $a(PQKBWorkID)10714525 035 $a(PQKB)11257979 035 $a(UkCbUP)CR9781139012843 035 $a(OCoLC)793510851 035 $a(MiAaPQ)EBC866868 035 $a(Au-PeEL)EBL866868 035 $a(CaPaEBR)ebr10559486 035 $a(CaONFJC)MIL357125 035 $z(PPN)261330705 035 $a(PPN)234907878 035 $a(EXLCZ)992670000000177937 100 $a20110203d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematics of public key cryptography /$fSteven D. Galbraith (University of Auckland) 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xiv, 615 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 1 $a9781107013926 311 1 $a1-107-01392-5 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- Part I. Background -- 2. Basic algorithmic number theory -- 3. Hash functions and MACs -- Part II. Algebraic Groups -- 4. Preliminary remarks on algebraic groups -- 5. Varieties -- 6. Tori, LUC and XTR -- 7. Curves and divisor class groups -- 8. Rational maps on curves and divisors -- 9. Elliptic curves --10. Hyperelliptic curves -- Part III. Exponentiation, Factoring and Discrete Logarithms -- 11. Basic algorithms for algebraic groups -- 12. Primality testing and integer factorisation using algebraic groups --13. Basic discrete logarithm algorithms -- 14. Factoring and discrete logarithms using pseudorandom walks -- 15. Factoring and discrete logarithms in subexponential algorithms -- Part IV. Lattices -- 16. Lattices -- 17. Lattice basis reduction -- 18. Algorithms for the closest and shortest vector problems -- 19. Coppersmith's method and related applications -- Part V. Cryptography Related to Discrete Logarithms -- 20. The Diffie-Hellman problem and cryptographic applications -- 21. The Diffie-Hellman problem -- 22. Digital signatures based on discrete logarithms -- 23. Public key encryption based on discrete logarithms -- Part VI. Cryptography Related to Integer Factorisation -- 24. The RSA and Rabin cryptosystems -- Part VII. Advanced Topics in Elliptic and Hyperelliptic Curves -- 25. Isogenies of elliptic curves -- 26. Pairings on elliptic curves. 330 $aPublic key cryptography is a major interdisciplinary subject with many real-world applications, such as digital signatures. A strong background in the mathematics underlying public key cryptography is essential for a deep understanding of the subject, and this book provides exactly that for students and researchers in mathematics, computer science and electrical engineering. Carefully written to communicate the major ideas and techniques of public key cryptography to a wide readership, this text is enlivened throughout with historical remarks and insightful perspectives on the development of the subject. Numerous examples, proofs and exercises make it suitable as a textbook for an advanced course, as well as for self-study. For more experienced researchers it serves as a convenient reference for many important topics: the Pollard algorithms, Maurer reduction, isogenies, algebraic tori, hyperelliptic curves and many more. 606 $aCodificaciķ, Teoria de la$2lemac 606 $aCriptografia$xMatemātica$2lemac 606 $aCoding theory 606 $aCryptography$xMathematics 606 $aCriptografia$2thub 606 $aTeoria de la codificaciķ$2thub 608 $aLlibres electrōnics$2thub 615 7$aCodificaciķ, Teoria de la. 615 7$aCriptografia$xMatemātica. 615 0$aCoding theory. 615 0$aCryptography$xMathematics. 615 7$aCriptografia 615 7$aTeoria de la codificaciķ 676 $a003/.54 686 $aMAT008000$2bisacsh 700 $aGalbraith$b Steven D.$0721516 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910790280403321 996 $aMathematics of public key cryptography$91411160 997 $aUNINA