LEADER 03251nam 2200601Ia 450 001 9910789981003321 005 20200520144314.0 010 $a1-61761-647-8 035 $a(CKB)2670000000091410 035 $a(EBL)3017705 035 $a(SSID)ssj0000466633 035 $a(PQKBManifestationID)12143597 035 $a(PQKBTitleCode)TC0000466633 035 $a(PQKBWorkID)10466115 035 $a(PQKB)11209476 035 $a(MiAaPQ)EBC3017705 035 $a(Au-PeEL)EBL3017705 035 $a(CaPaEBR)ebr10654676 035 $a(OCoLC)923653379 035 $a(EXLCZ)992670000000091410 100 $a20100730d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAcoustic cavitation theory and equipment design principles for industrial applications of high-intensity ultrasound$b[electronic resource] /$fAlexey S. Peshkovsky and Sergei L. Peshkovsky 210 $aNew York $cNova Science Publishers$dc2010 215 $a1 online resource (70 p.) 225 0$aPhysics research and technology 300 $aDescription based upon print version of record. 311 $a1-61761-093-3 320 $aIncludes bibliographical references and index. 327 $a""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""INTRODUCTION""; ""SHOCK-WAVE MODEL OF ACOUSTIC CAVITATION""; ""2.1. VISUAL OBSERVATIONS OF ACOUSTIC CAVITATION""; ""2.2. JUSTIFICATION FOR THE SHOCK-WAVE APPROACH""; ""2.3. THEORY""; ""2.3.1. Oscillations of a Single Gas Bubble""; ""2.3.2. Cavitation Region""; ""2.4. SET-UP OF EQUATIONS FOR EXPERIMENTAL VERIFICATION""; ""2.4.1. Low Oscillatory Velocities of Acoustic Radiator""; ""2.4.2. High Oscillatory Velocities of Acoustic Radiator""; ""2.4.3. Interpretation of Experimental Results of Work [26]"" 327 $a""2.5. EXPERIMENTAL SETUP""""2.6. EXPERIMENTAL RESULTS""; ""2.7. SECTION CONCLUSIONS""; ""SELECTION AND DESIGN OF MAIN COMPONENTS OF HIGH-CAPACITY ULTRASONIC SYSTEMS""; ""3.1. ELECTRO MECHANICAL TRANSDUCERS ELECTION CONSIDERATIONS""; ""3.2. HIGH POWER ACOUSTIC HORN DESIGN PRINCIPLES""; ""3.2.1. Criteria for Matching a Magnetostrictive Transducer to Water at Cavitation""; ""3.2.2. Five-Elements Matching Horns""; ""3.2.2.1. Design Principles""; ""3.2.2.2. Analysis of Five-Element Horns""; ""3.2.3. Experimental Results""; ""3.3. SECTION CONCLUSIONS""; ""ULTRASONIC REACTORCHAMBER GEOMETRY"" 327 $a""FINAL REMARKS""""REFERENCES""; ""INDEX"" 410 0$aPhysics Research and Technology 606 $aUltrasonic waves$xIndustrial applications 606 $aCavitation 606 $aUltrasonic equipment$xDesign and construction 615 0$aUltrasonic waves$xIndustrial applications. 615 0$aCavitation. 615 0$aUltrasonic equipment$xDesign and construction. 676 $a620.2/8 700 $aPeshkovsky$b Alexey S$01486681 701 $aPeshkovsky$b Sergei L$01486682 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910789981003321 996 $aAcoustic cavitation theory and equipment design principles for industrial applications of high-intensity ultrasound$93706257 997 $aUNINA LEADER 01483nam0 22003613i 450 001 PUV0267474 005 20251003044312.0 010 $a0521462827$bHardback 010 $a9780521468268$bPaperback 100 $a20070919d1995 ||||0itac50 ba 101 | $aeng 102 $agb 181 1$6z01$ai $bxxxe 182 1$6z01$an 183 1$6z01$anc$2RDAcarrier 200 1 $aExploration seismology$fR. E. Sheriff, L. P. Geldart 205 $a2. ed 210 $aCambridge$cUniversity Press$d1995 215 $aXV, 592 p.$cill.$d28 cm. 606 $aSismologia$2FIR$3CFIC014527$9E 676 $a551.22$9Terremoti$v14 700 1$aSheriff$b, Robert E.$3UFIV018841$4070$0442193 701 1$aGeldart$b, L. P.$3UFIV084227$4070$0442192 790 1$aSheriff$b, Robert Edward$f <1922->$3PMIV005719$zSheriff, Robert E. 801 3$aIT$bIT-000000$c20070919 850 $aIT-BN0095 901 $bNAP 01$cDOCENTI $nComprende testi acquistati con fondi assegnati ai docenti del DSGA 901 $bNAP 01$cSALA $n$ 912 $aPUV0267474 950 0$aBiblioteca Centralizzata di Ateneo$b1 v. in due copie$cv. 1-1 bis$d 01DOCENTI 551.22 SHE.ex$e 0104 0000008095 VMA (bis 1 v. (2 copia)$fA $h20071120$i20071120$c1 v.$d 01SALA 551.22 SHE.ex$e 0104 0000003855 VMA 1 v.$fA $h20070919$i20070919 977 $a 01 996 $aExploration seismology$91574145 997 $aUNISANNIO