LEADER 05521nam 2200685Ia 450 001 9910789969103321 005 20200520144314.0 010 $a1-280-67478-4 010 $a9786613651716 010 $a1-118-31196-5 010 $a1-61344-891-0 010 $a1-118-31197-3 010 $a1-118-31194-9 035 $a(CKB)2670000000159967 035 $a(EBL)827068 035 $a(OCoLC)779616347 035 $a(SSID)ssj0000612109 035 $a(PQKBManifestationID)11379559 035 $a(PQKBTitleCode)TC0000612109 035 $a(PQKBWorkID)10666461 035 $a(PQKB)10912464 035 $a(MiAaPQ)EBC827068 035 $a(Au-PeEL)EBL827068 035 $a(CaPaEBR)ebr10538626 035 $a(CaONFJC)MIL365171 035 $a(PPN)166903574 035 $a(EXLCZ)992670000000159967 100 $a20111017d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aIntelligent nanomaterials$b[electronic resource] $eprocesses, properties, and applications /$fedited by Ashutosh Tiwari ... [et al.] 210 $aHoboken, NJ $cJohn Wiley & Sons ;$aSalem, Mass. $cScrivener Pub.$dc2012 215 $a1 online resource (866 p.) 300 $aDescription based upon print version of record. 311 $a0-470-93879-X 320 $aIncludes bibliographical references and index. 327 $aIntelligent Nanomaterials: Processes, Properties, and Applications; Contents; Preface; PART I Inorganic Materials; 1. Synthesis, Characterization, and Self-assembly of Colloidal Quantum Dots; 1.1 Introduction; 1.2 Size-dependent Optical Properties of Quantum Dots; 1.2.1 Band Gap Energies; 1.2.2 Absorption Spectra; 1.3 Procedures for Synthesis of Colloidal Quantum Dots; 1.3.1 Synthesis of Quantum Dots in Reverse Micelles; 1.3.2 Synthesis of Quantum Dots in Aqueous Media; 1.3.3 Hot-matrix Synthesis of Quantum Dots; 1.4 Types of Semiconductor Quantum Dots; 1.4.1 Binary Quantum Dots 327 $a1.4.2 Alloyed Quantum Dots1.4.3 Core/shell Quantum Dots: ""Type-I""; 1.4.4 Core/shell Quantum Dots: ""Type-II""; 1.4.5 Quantum Dot/quantum Well Nanocrystals; 1.4.6 Transition-element-doped Quantum Dots; 1.5 Surface Functionalization of Quantum Dots; 1.5.1 Self-assembly of Colloidal Quantum Dots; 1.6 Conclusions; References; 2. One-dimensional Semiconducting Metal Oxides: Synthesis, Characterization and Gas Sensors Application; 2.1 Introduction; 2.2 Synthesis of 1-D Metal Oxide; 2.2.1 Vapor Phase Growth; 2.2.2 Vapor-liquid-solid Mechanism; 2.2.3 Vapor Solid Mechanism; 2.3 Solution Phase Growth 327 $a2.3.1 Template Assisted Synthesis2.3.2 Template Free Synthesis; 2.4 Gas Sensor Applications; 2.4.1 SnO2 NWs Based Gas Sensors; 2.4.2 WO3 NWs Based Gas Sensors; 2.4.3 ZnO NWs Based Gas Sensors; 2.4.4 TiO2 NWs Based Gas Sensor; 2.4.5 CuO NWs Based Gas Sensors; 2.4.6 In2O3 NWs Based Gas Sensors; 2.5 Conclusions; Acknowledgement; References; 3. Rare-earth Based Insulating Nanocrystals: Improved Luminescent Nanophosphors for Plasma Display Panels; 3.1 What is Plasma Display Panel? An Introduction and Overview; 3.2 History of Plasma Display Panel; 3.3 Working of Plasma Display Panel 327 $a3.3.1 Advantages of Plasma Display Panel3.3.2 Disadvantages of Plasma Display Panel; 3.4 Nanophosphors for Plasma Display Panel; 3.4.1 Blue Nanophosphors; 3.5 Synthesis of BAM:Eu2+ Nanophosphors by Sol-gel Method; 3.5.1 Chemicals Used; 3.5.2 Methodology; 3.5.3 Characterization of Prepared Nanophosphors; 3.5.4 Results and Discussion; 3.6 Time Evolution Studies and Decay Time Determination; 3.7 Synthesis of BAM:Eu2+ Nanophosphors by Solution Combustion Method; 3.7.1 Chemicals Used; 3.7.2 Methodology; 3.7.3 Characterization of Prepared Nanophosphors; 3.7.4 Results and Discussion 327 $a3.8 Green Nanophosphors3.8.1 Yttrium Aluminum Garnet Y3Al5O12:Tb3+ (YAG:Tb3+) Nanophosphors; 3.8.2 Synthesis of Y3Al5O12:Tb3+ (YAG:Tb3+) Nanophosphors by Sol-gel Method; 3.8.3 Chemicals Used; 3.8.4 Methodology; 3.8.5 Characterization of Prepared Y3Al5O12:Tb3+ (YAG:Tb3+) Nanophosphors; 3.8.6 Results and Discussion; 3.9 Terbium Doped Yttrium Ortho-borate (YBO3:Tb3+) Nanophosphors; 3.9.1 Synthesis of Terbium Doped Yttrium Ortho-borate (YBO3:Tb3+) Nanophosphors; 3.9.2 Chemicals Used; 3.9.3 Methodology; 3.9.4 Characterizations Used; 3.9.5 Result and Discussion 327 $a3.10 Red Nanophosphors: Yttrium Aluminum Garnet Y3AlO12:Eu3+ (YAG:Eu3+) Nanophosphors 330 $aIntelligent Nanomaterials comprehensively provides up-to-date material of this fascinating field. The last three decades have seen extraordinary advances in the generation of new materials based on both fundamental elements and composites, driven by advances in synthetic chemistry and often drawing inspiration from nature. The concept of an intelligent material envisions additional functionality built into the molecular structure, such that a desirable response occurs under defined conditions. Divided into 4 parts: Inorganic Materials; Organic Materials; Composite Materials; and 606 $aNanostructured materials 606 $aSmart materials 615 0$aNanostructured materials. 615 0$aSmart materials. 676 $a620.1/15 686 $aTEC021000$2bisacsh 701 $aTiwari$b Ashutosh$f1978-$0738472 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910789969103321 996 $aIntelligent nanomaterials$93836554 997 $aUNINA