LEADER 00995nam0-2200313---450- 001 990008642810403321 005 20080603120636.0 010 $a88-7092-148-4 035 $a000864281 035 $aFED01000864281 035 $a(Aleph)000864281FED01 035 $a000864281 100 $a20080404d1997----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>legislazione scolastica dell'imperatore Giuliano$eC. Th. 13,3,5 ed epistula 61C tra misure anticristiane e riforma del munus docendi$fEmilio Germino 210 $aNapoli$cM. D'Auria$dc1997 215 $a136 p.$d21 cm 225 1 $aKoinonia 300 $aIn testa al front.: Associazione di studi tardoantichi 700 1$aGermino,$bEmilio$0259838 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008642810403321 952 $aXVIII D 231.97$b392$fNAP02 959 $aNAP02 996 $aLegislazione scolastica dell'imperatore Giuliano$9716212 997 $aUNINA LEADER 04558nam 2200745 450 001 9910789305003321 005 20211014031301.0 010 $a3-11-026340-8 024 7 $a10.1515/9783110264012 035 $a(CKB)3580000000000529 035 $a(EBL)1130384 035 $a(SSID)ssj0001124124 035 $a(PQKBManifestationID)11960074 035 $a(PQKBTitleCode)TC0001124124 035 $a(PQKBWorkID)11076934 035 $a(PQKB)10293575 035 $a(MiAaPQ)EBC1130384 035 $a(DE-B1597)172224 035 $a(OCoLC)855226579 035 $a(OCoLC)858761960 035 $a(DE-B1597)9783110264012 035 $a(Au-PeEL)EBL1130384 035 $a(CaPaEBR)ebr10786199 035 $a(CaONFJC)MIL807739 035 $a(PPN)17555448X 035 $a(EXLCZ)993580000000000529 100 $a20131124h20132013 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aMetric Eembeddings $eBilipschitz and coarse embeddings into Banach Spaces /$fMikhail I. Ostrovskii 210 1$aBerlin :$cDe Gruyter,$d2013. 210 4$d©2013 215 $a1 online resource (384 p.) 225 0 $aDe Gruyter Studies in Mathematics ;$v49 300 $aDescription based upon print version of record. 311 0 $a3-11-026401-3 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tPreface --$tContents --$tChapter 1. Introduction: examples of metrics, embeddings, and applications --$tChapter 2. Embeddability of locally finite metric spaces into Banach spaces is finitely determined. Related Banach space theory --$tChapter 3. Constructions of embeddings --$tChapter 4. Obstacles for embeddability: Poincaré inequalities --$tChapter 5. Families of expanders and of graphs with large girth --$tChapter 6. Banach spaces which do not admit uniformly coarse embeddings of expanders --$tChapter 7. Structure properties of spaces which are not coarsely embeddable into a Hilbert space --$tChapter 8. Applications of Markov chains to embeddability problems --$tChapter 9. Metric characterizations of classes of Banach spaces --$tChapter 10. Lipschitz free spaces --$tChapter 11. Open problems --$tBibliography --$tAuthor index --$tSubject index 330 $aEmbeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include: (1) Embeddability of locally finite metric spaces into Banach spaces is finitely determined; (2) Constructions of embeddings; (3) Distortion in terms of Poincaré inequalities; (4) Constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees; (5) Banach spaces which do not admit coarse embeddings of expanders; (6) Structure of metric spaces which are not coarsely embeddable into a Hilbert space; (7) Applications of Markov chains to embeddability problems; (8) Metric characterizations of properties of Banach spaces; (9) Lipschitz free spaces. Substantial part of the book is devoted to a detailed presentation of relevant results of Banach space theory and graph theory. The final chapter contains a list of open problems. Extensive bibliography is also included. Each chapter, except the open problems chapter, contains exercises and a notes and remarks section containing references, discussion of related results, and suggestions for further reading. The book will help readers to enter and to work in a very rapidly developing area having many important connections with different parts of mathematics and computer science. 410 3$aDe Gruyter Studies in Mathematics 606 $aBanach spaces 606 $aLipschitz spaces 606 $aStochastic partial differential equations 610 $aBanach Space Theory. 610 $aBilipschitz Embedding. 610 $aCoarse Embedding. 610 $aEmbedding of Discrete Metric Spaces. 610 $aFunctional Analysis. 610 $aGraph Theory. 615 0$aBanach spaces. 615 0$aLipschitz spaces. 615 0$aStochastic partial differential equations. 676 $a515.732 676 $a515/.732 700 $aOstrovskii$b Mikhail I$01563073 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910789305003321 996 $aMetric Eembeddings$93831203 997 $aUNINA