LEADER 01214nam a2200301 i 4500 001 991003181219707536 005 20020503184517.0 008 990316s1986 it ||| | ita 020 $a8822102487 035 $ab10469473-39ule_inst 035 $aEXGIL116516$9ExL 040 $aDip.to Filol. Ling. e Lett.$bita 082 0 $a450.712 100 1 $aBertocchi, Daniela$0152417 245 12$aL'italiano a scuola /$cDaniela Bertocchi ... [et al.] 260 $aScandicci :$bLa nuova Italia,$c328 p. : ill. ; 22 cm. 300 $aVI, 328 p. ;$c21 cm. 490 0 $aDidattica viva ;$v97 650 4$aItaliano 650 4$aLingua italiana - Insegnamento 907 $a.b10469473$b21-02-17$c27-06-02 912 $a991003181219707536 945 $aLE008 L.L.I.D B VII 22$g1$i2008000464127$lle008$o-$pE0.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i10542814$z27-06-02 945 $aLE008 L.L.I.D B VII 22$g2$iLE008N-9512$lle008$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10542826$z27-06-02 945 $aLE008 L.L.I.D B VII 22 bis$g1$iLE008N-9513$lle008$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10542838$z27-06-02 996 $aItaliano a scuola$9222695 997 $aUNISALENTO 998 $ale008$b01-01-99$cm$da $e-$fita$git $h2$i3 LEADER 05178nam 22005535 450 001 9910789209803321 005 20200702042056.0 010 $a3-642-51438-3 024 7 $a10.1007/978-3-642-51438-8 035 $a(CKB)3400000000103668 035 $a(SSID)ssj0001297766 035 $a(PQKBManifestationID)11861127 035 $a(PQKBTitleCode)TC0001297766 035 $a(PQKBWorkID)11229586 035 $a(PQKB)11386519 035 $a(DE-He213)978-3-642-51438-8 035 $a(MiAaPQ)EBC3089336 035 $a(PPN)238008290 035 $a(EXLCZ)993400000000103668 100 $a20121227d1990 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNéron Models$b[electronic resource] /$fby Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud 205 $a1st ed. 1990. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1990. 215 $a1 online resource (X, 328 p.) 225 1 $aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,$x0071-1136 ;$v21 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-50587-3 311 $a3-642-08073-1 320 $aIncludes bibliographical references and index. 327 $a1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models -- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron?s Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron?s Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group of Connected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case. 330 $aNéron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor. 410 0$aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,$x0071-1136 ;$v21 606 $aAlgebraic geometry 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aAlgebraic geometry. 615 14$aAlgebraic Geometry. 676 $a516.35 700 $aBosch$b Siegfried$4aut$4http://id.loc.gov/vocabulary/relators/aut$041946 702 $aLütkebohmert$b Werner$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRaynaud$b Michel$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910789209803321 996 $aNeron models$9382528 997 $aUNINA