LEADER 02172nam 2200457 450 001 9910795127403321 005 20240119130117.0 010 $a1-84888-481-8 024 7 $a10.1163/9781848884816 035 $a(CKB)4920000000126679 035 $a(OCoLC)1096240811 035 $a(nllekb)BRILL9781848884816 035 $a(MiAaPQ)EBC6853591 035 $a(Au-PeEL)EBL6853591 035 $a(EXLCZ)994920000000126679 100 $a20220301d2019 uy 0 101 0 $aeng 135 $aurun#---uuuua 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $2rdacarrier 200 10$aEdgelands $ea collection of monstrous geographies /$fErin Vander Wall 210 1$aLeiden :$cBrill,$d[2019] 210 4$d©2019 215 $a1 online resource 311 1 $a90-04-37053-6 320 $aIncludes bibliographical references and index. 327 $tPreliminary Material --$tWithin and Without: Human-Monster Boundary in Attack on Titan /$rYa-han Chang --$tStadtschaft and Urban Wildscapes /$rWeronika Ma?ków --$tChristchurch as Lisbon: The Legacy of the Seismic Sublime /$rJacky Bowring --$tThe Triangle: A Narrative Portrait of Place-Gathered Monstrousness /$rYasmine Musharbash --$tThe Devil Comes to Visit /$rDeirdre Nuttall --$tThe Australian Gothic as a New Mode in Australian Landscape Photography /$rRebecca Dagnall --$tThe Persian and Muslim Conquest of Byzantine Palestina: Monstrous Invasion or Peaceful Occupation? /$rEliya Ribak --$tA Monster Painting Monsters: Norval Morrisseau and His Painted Images /$rCarmen Robertson --$tSatan?s Architecture of Fear: Landscape, Body and Emotion in Paradise Lost /$rHsin Hsieh --$tThe Dystopian Geography /$rElisabetta Di Minico --$tCitypunk: Transgeographies in Science Fiction Comics /$rJoao Rosmaninho DS. 606 $aKnowledge, Theory of 606 $aPhilosophy$xResearch 615 0$aKnowledge, Theory of. 615 0$aPhilosophy$xResearch. 676 $a121 700 $aWall$b Erin Vander$01577621 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910795127403321 996 $aEdgelands$93856393 997 $aUNINA LEADER 08174nam 22005295 450 001 9910789205203321 005 20230228174016.0 010 $a94-011-0750-5 024 7 $a10.1007/978-94-011-0750-1 035 $a(CKB)3400000000121471 035 $a(SSID)ssj0000925541 035 $a(PQKBManifestationID)11552110 035 $a(PQKBTitleCode)TC0000925541 035 $a(PQKBWorkID)10881046 035 $a(PQKB)10330913 035 $a(DE-He213)978-94-011-0750-1 035 $a(MiAaPQ)EBC3104982 035 $a(EXLCZ)993400000000121471 100 $a20121227d1994 uy 0 101 0 $aeng 135 $aurnn#---mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModelling potential crop growth processes $etextbook with exercises /$fJ. Goudriaan, H.H. Van Laar 205 $aFirst edition 1994. 210 1$aDordrecht :$cSpringer Netherlands :$cImprint: Springer,$d1994. 215 $a1 online resource (XII, 239 pages) 225 1 $aCurrent Issues in Production Ecology,$x0929-7006 ;$v2 300 $aBibliographic Level Mode of Issuance: Monograph 311 1 $a0-7923-3219-9 311 1 $a0-7923-3220-2 320 $aIncludes bibliographical references and index. 327 $a1 Introduction -- 1.1 Levels of understanding of crop growth -- 1.2 Growth factors and production situations -- 1.3 CO2 assimilation as a basis -- 1.4 Some general modelling considerations -- 1.5 Outline of the book -- 2 The main seasonal growth pattern -- 2.1 Introduction -- 2.2 The growth phases -- 2.3 Exponential-linear growth: one equation -- 2.4 A special case: rm, cm,p1 and s are constant -- 2.5 Application for variable weather conditions -- 2.6 Generalization on approaching the senescence phase -- 2.7 A term for losses due to maintenance respiration -- 2.8 Additional exercises -- 2.9 Solutions to the exercises -- 2.10 Symbols and acronyms used in Chapter 2 -- 3 Climatic factors -- 3.1 Importance of the diurnal course -- 3.2 The daily progress of the incident global radiation -- 3.3 Temperature -- 3.4 Humidity -- 3.5 Wind speed -- 3.6 Annual temperature course -- 3.7 Additional exercises -- 3.8 Solutions to the exercises -- 3.9 Symbols and acronyms used in Chapter 3 -- 4 Assimilate flow and respiration -- 4.1 Introduction -- 4.2 Growth and respiration -- 4.3 Short-circuiting the assimilate pool on the long-term -- 4.4 Growth respiration and chemical composition -- 4.5 Maintenance respiration -- 4.6 Additional exercises -- 4.7 Solutions to the exercises -- 4.8 Symbols and acronyms used in Chapter 4 -- 5 Development and growth -- 5.1 Introduction -- 5.2 Development stages -- 5.3 Development rate and environmental factors -- 5.4 Distribution of dry matter and development stage -- 5.5 Leaf area growth -- 5.6 Solutions to the exercises -- 5.7 Symbols and acronyms used in Chapter 5 -- 6 Radiation in crops -- 6.1 Introduction -- 6.2 A model crop with black horizontal leaves -- 6.3 Black leaves that are not horizontal -- 6.4 Horizontal leaves that are not black -- 6.5 Scattering leaves, non-horizontal -- 6.6 Scattering by leaves and soil -- 6.7 Distribution of absorption of light over the leaf canopy -- 6.8 Clustering -- 6.9 Additional exercise -- 6.10 Solutions to the exercises -- 6.11 Symbols and acronyms used in Chapter 6 -- 7 Leaf energy balance and transpiration -- 7.1 Introduction -- 7.2 Energy balance of a non-transpiring leaf -- 7.3 Thermal (?long-wave?) radiation: 3 ? 20 ?m -- 7.4 Evaporation from a wet surface -- 7.5 Leaf transpiration -- 7.6 Units of conductance: m s?1 or ?mol m?2 s?1 -- 7.7 Notation with the coupling factor Omega -- 7.8 Additional exercises -- 7.9 Solutions to the exercises -- 7.10 Symbols and acronyms used in Chapter 7 -- 8 Analysis of leaf CO2 assimilation -- 8.1 Introduction -- 8.2 The photosynthesis-light response curve -- 8.3 The light and dark processes in CO2 assimilation -- 8.4 Limitation by low CO2 -- 8.5 Maximal photosynthetic capacity (at both high light and high CO2) -- 8.6 Limitation by low light -- 8.7 The C3 cycle, photorespiration and the CO2 compensation point -- 8.8 Temperature -- 8.9 Additional exercises -- 8.10 Solutions to the exercises -- 8.11 Symbols and acronyms used in Chapter 8 -- References -- Appendix 1 Richards and Gompertz functions -- A1.1 Richards function -- A1.2 Gompertz function -- Appendix 2 Gaussian integration in simulation modelling -- A2.1 Introduction -- A2.2 Canopy photosynthesis -- A2.3 Solution to the exercise -- Appendix 3 SUCROS1 ? A crop growth model for potential production -- A3.1 Introduction -- A3.2 Initial conditions -- A3.3 Crop development (Chapter 5) -- A3.6 Carbohydrate production (Chapter 4) -- A3.7 Maintenance (Chapter 4) -- A3.8 Dry matter partitioning (Chapter 5) -- A3.9 Growth of plant organs and translocation (Chapts 4 and 5) -- A3.10 Leaf and ear development (Chapter 5) -- A3.11 Dry matter production -- A3.12 Weather data (Chapter 3) -- A3.13 Carbon balance check (Chapter 4) -- A3.14 Run control -- A3.15 Structure and listing of the model -- A3.16 Definition of the abbreviations used in SUCROS1 -- Appendix 4 SUCROS1 ? adapted for soil reflection -- Appendix 5 The FORTRAN Simulation Translator (FST), a simulation language -- A5.1 Introduction -- A5.2 The structure of the model -- A5.3 FST example program simulating logistic growth -- A5.4 Comment lines and FST statements -- A5.5 Rules for FST keywords, variable names and values -- A5.6 Definition of input values of the model (PARAMETER, INCON, CONSTANT, FUNCTION) -- A5.7 Hierarchy of operations in expressions, and the use of FST functions and FORTRAN functions -- A5.8 FST keywords for output (TITLE, PRINT, OUTPUT) -- A5.9 FST run control keywords (TRANSLATION_GENERAL, TRANSLATION_FSE, TIMER, FINISH) -- A5.10 Weather data in FST programs (WEATHER) -- A5.11 Rerun facility, the END keyword -- A5.12 FORTRAN subroutines with FST, the STOP keyword -- Appendix 6 Derivation of the equations for exponential extinction of horizontal, non-black leaves (after Goudriaan (1977), pg 13?14). 330 $aWe dedicate this book to professor C. T. de Wit (1924 - 1993) who initiated Production Ecology as a school of thought at the Wageningen Agricultural Univer­ sity (see Rabbinge et at. , 1990). To acknowledge the leading role of C. T. de Wit, a recently formed graduate school at this university in Production Ecology was named after him. Production Ecology is the study of ecological processes, with special attention to flows of energy and matter as factors that determine the productivity of ecological systems. Agro-ecosystems are a special case of ecosystems which are much better suited for the productivity approach than natural ecosystems are. This is the reason for the strong role of agricultural research in production ecology. On the other hand, it must be recognized that the spatial heterogeneity of natural ecosys­ tems and their species richness may alter some ecophysiological relationships. However, the basic physical, chemical and physiological processes will be the same. De Wit introduced the state variable approach as the basis for simulation mod­ elling. In this approach the floating character of nature is schematized into a series of snapshots over time in which the states are frozen at each separate moment. The current state determines how the rates of change will lead to the next snapshot. This way of thinking enables a clear and workable representation of interacting simul­ taneous processes, without compromising on the mathematics. 410 0$aCurrent Issues in Production Ecology,$x0929-7006 ;$v2 606 $aCrops$xGrowth$xComputer simulation 606 $aCrops$xPhysiology$xComputer simulation 615 0$aCrops$xGrowth$xComputer simulation. 615 0$aCrops$xPhysiology$xComputer simulation. 676 $a580 700 $aGoudriaan$b J$4aut$4http://id.loc.gov/vocabulary/relators/aut$022326 702 $aLaar$b H. H. van$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910789205203321 996 $aModelling potential crop growth processes$93748014 997 $aUNINA