LEADER 05076nam 2200661 a 450 001 9910789071203321 005 20230725052644.0 010 $a1-283-23472-6 010 $a9786613234728 010 $a981-4322-45-8 035 $a(CKB)3400000000016920 035 $a(EBL)840590 035 $a(OCoLC)748215454 035 $a(SSID)ssj0000538061 035 $a(PQKBManifestationID)12251348 035 $a(PQKBTitleCode)TC0000538061 035 $a(PQKBWorkID)10557400 035 $a(PQKB)11708262 035 $a(MiAaPQ)EBC840590 035 $a(WSP)00001323 035 $a(Au-PeEL)EBL840590 035 $a(CaPaEBR)ebr10493511 035 $a(CaONFJC)MIL323472 035 $a(EXLCZ)993400000000016920 100 $a20110126d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to relativistic statistical mechanics$b[electronic resource] $eclassical and quantum /$fRe?mi Hakim 210 $aHackensack, N.J. $cWorld Scientific$dc2011 215 $a1 online resource (567 p.) 300 $aDescription based upon print version of record. 311 $a981-4322-43-1 320 $aIncludes bibliographical references (p. 465-528) and index. 327 $aContents; Preface; Notations and Conventions; Introduction; 1. The One-Particle Relativistic Distribution Function; 1.1 The One-Particle Relativistic Distribution Function; 1.1.1 The phase space "volume element"; 1.2 The Juttner-Synge Equilibrium Distribution; 1.2.1 Thermodynamics of the Juttner-Synge gas; 1.2.2 Thermal velocity; 1.2.3 Moments of the Juttner-Synge function; 1.2.4 Orthogonal polynomials; 1.2.5 Zeromass particles; 1.3 From the Microcanonical Distribution to the Juttner-Synge One; 1.4 Equilibrium Fluctuations; 1.5 One-Particle Liouville Theorem 327 $a1.5.1 Relativistic Liouville equation from the Hamiltonian equations of motion1.5.2 Conditions for the Juttner-Synge functions to be an equilibrium; 1.6 The Relativistic Rotating Gas; 2. Relativistic Kinetic Theory and the BGK Equation; 2.1 Relativistic Hydrodynamics; 2.1.1 Sound velocity; 2.1.2 The Eckart approach; 2.1.3 The Landau-Lifschitz approach; 2.2 The Relaxation Time Approximation; 2.3 The Relativistic Kinetic Theory Approach to Hydrodynamics; 2.4 The Static Conductivity Tensor; 2.5 Approximation Methods for the Relativistic Boltzmann Equation and Other Kinetic Equations 327 $a2.5.1 A simple Chapman-Enskog approximation2.6 Transport Coefficients for a System Embedded in aMagnetic Field; 3. Relativistic Plasmas; 3.1 Electromagnetic Quantities in Covariant Form; 3.2 The Static Conductivity Tensor; 3.3 Debye-H ?uckel Law; 3.4 Derivation of the Plasma Modes; 3.4.1 Evaluation of the various integrals; 3.4.2 Collective modes in extreme cases; 3.5 Brief Discussion of the Plasma Modes; 3.6 The Conductivity Tensor; 3.7 Plasma-Beam Instability; 3.7.1 Perturbed dispersion relations for the plasma-beamsystem; 3.7.2 Stability of the beam-plasma system 327 $a4. Curved Space-Time and Cosmology4.1 Basic Modifications; 4.2 Thermal Equilibrium in a Gravitational Field; 4.2.1 Thermal equilibrium in a static isotropicmetric; 4.3 Einstein-Vlasov Equation; 4.3.1 Linearization of Einstein's equation; 4.3.2 The formal solution to the linearized Einstein equation; 4.3.3 The self-consistent kinetic equation for the gravitating gas; 4.4 An Illustration in Cosmology; 4.4.1 The two-timescale approximation; 4.4.2 Derivation of the dispersion relations (a rough outline); 4.5 Cosmology and Relativistic Kinetic Theory; 4.5.1 Cosmology: a very brief overview 327 $a4.5.2 Kinetic theory and cosmology4.5.3 Kinetic theory of the observed universe; 4.5.4 Statistical mechanics in the primeval universe; 4.5.5 Particle survival; 5. Relativistic Statistical Mechanics; 5.1 The Dynamical Problem; 5.2 Statement of the Main Statistical Problems; 5.2.1 The initial value problem: observations andmeasures; 5.2.2 Phase space and the Gibbs ensemble; 5.3 Many-Particle Distribution Functions; 5.3.1 Statistics of the particles' manifolds; 5.4 The Relativistic BBGKY Hierarchy; 5.4.1 Cluster decomposition of the relativistic distribution functions 327 $a5.5 Self-interaction and Radiation 330 $aThis is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statisti 606 $aStatistical mechanics 606 $aRelativistic quantum theory 606 $aRelativistic kinematics 615 0$aStatistical mechanics. 615 0$aRelativistic quantum theory. 615 0$aRelativistic kinematics. 676 $a530.13 700 $aHakim$b Re?mi$f1936-$0542515 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910789071203321 996 $aIntroduction to relativistic statistical mechanics$93823066 997 $aUNINA