LEADER 02456nam 2200649 a 450 001 9910784390803321 005 20230207225519.0 010 $a0-8166-9838-4 035 $a(CKB)1000000000346658 035 $a(EBL)310758 035 $a(OCoLC)476096138 035 $a(SSID)ssj0000134302 035 $a(PQKBManifestationID)11136998 035 $a(PQKBTitleCode)TC0000134302 035 $a(PQKBWorkID)10053926 035 $a(PQKB)11755387 035 $a(MiAaPQ)EBC310758 035 $a(OCoLC)170526255 035 $a(MdBmJHUP)muse39032 035 $a(Au-PeEL)EBL310758 035 $a(CaPaEBR)ebr10180210 035 $a(CaONFJC)MIL523141 035 $a(EXLCZ)991000000000346658 100 $a20060607d2006 ub 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCyberspaces of everyday life$b[electronic resource] /$fMark Nunes 210 $aMinneapolis $cUniversity of Minnesota Press$dc2006 215 $a1 online resource (253 p.) 225 1 $aElectronic mediations ;$vv. 19 300 $aDescription based upon print version of record. 311 $a0-8166-4792-5 311 $a0-8166-4791-7 320 $aIncludes bibliographical references (p. 201-213) and index. 327 $aThe problem of cyberspace -- Virtual worlds and situated spaces : topographies of the World Wide Web -- Email, the letter, and the post -- Student bodies. 330 $aCyberspaces of Everyday Life provides a critical framework for understanding how the Internet takes part in the production of social space. Addressing the social implications of spam and anti-spam legislation, as well as how the Patriot Act has affected the relationship between networked spaces and daily living, Mark Nunes sheds light on the question of virtual space and its role in the offline world. 410 0$aElectronic mediations ;$vv. 19. 606 $aCyberspace 606 $aElectronic villages (Computer networks) 606 $aSocial networks 606 $aTelematics 615 0$aCyberspace. 615 0$aElectronic villages (Computer networks) 615 0$aSocial networks. 615 0$aTelematics. 676 $a303.48/34 700 $aNunes$b Mark$f1965-$01491004 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784390803321 996 $aCyberspaces of everyday life$93712530 997 $aUNINA LEADER 05253nam 2200709 a 450 001 9910788961403321 005 20230725052651.0 010 $a1-283-23477-7 010 $a9786613234773 010 $a981-4324-59-0 035 $a(CKB)3400000000016253 035 $a(EBL)840570 035 $a(OCoLC)748215459 035 $a(SSID)ssj0000537511 035 $a(PQKBManifestationID)12251896 035 $a(PQKBTitleCode)TC0000537511 035 $a(PQKBWorkID)10553370 035 $a(PQKB)10682822 035 $a(MiAaPQ)EBC840570 035 $a(WSP)00007933 035 $a(Au-PeEL)EBL840570 035 $a(CaPaEBR)ebr10493518 035 $a(CaONFJC)MIL323477 035 $a(EXLCZ)993400000000016253 100 $a20110608d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHenstock-Kurzweil integration on euclidean spaces$b[electronic resource] /$fLee Tuo Yeong 210 $aSingapore ;$aHackensack, N.J. $cWorld Scientific$dc2011 215 $a1 online resource (325 p.) 225 1 $aSeries in real analysis ;$vv. 12 300 $aDescription based upon print version of record. 311 $a981-4324-58-2 320 $aIncludes bibliographical references and indexes. 327 $aPreface; Contents; 1. The one-dimensional Henstock-Kurzweil integral; 1.1 Introduction and Cousin's Lemma; 1.2 Definition of the Henstock-Kurzweil integral; 1.3 Simple properties; 1.4 Saks-Henstock Lemma; 1.5 Notes and Remarks; 2. The multiple Henstock-Kurzweil integral; 2.1 Preliminaries; 2.2 The Henstock-Kurzweil integral; 2.3 Simple properties; 2.4 Saks-Henstock Lemma; 2.5 Fubini's Theorem; 2.6 Notes and Remarks; 3. Lebesgue integrable functions; 3.1 Introduction; 3.2 Some convergence theorems for Lebesgue integrals; 3.3 ?m-measurable sets; 3.4 A characterization of ?m-measurable sets 327 $a3.5 ?m-measurable functions3.6 Vitali Covering Theorem; 3.7 Further properties of Lebesgue integrable functions; 3.8 The Lp spaces; 3.9 Lebesgue's criterion for Riemann integrability; 3.10 Some characterizations of Lebesgue integrable functions; 3.11 Some results concerning one-dimensional Lebesgue integral; 3.12 Notes and Remarks; 4. Further properties of Henstock-Kurzweil integrable functions; 4.1 A necessary condition for Henstock-Kurzweil integrability; 4.2 A result of Kurzweil and Jarn ??k; 4.3 Some necessary and su cient conditions for Henstock- Kurzweil integrability 327 $a4.4 Harnack extension for one-dimensional Henstock-Kurzweil integrals4.5 Other results concerning one-dimensional Henstock- Kurzweil integral; 4.6 Notes and Remarks; 5. The Henstock variational measure; 5.1 Lebesgue outer measure; 5.2 Basic properties of the Henstock variational measure; 5.3 Another characterization of Lebesgue integrable functions; 5.4 A result of Kurzweil and Jarn ??k revisited; 5.5 A measure-theoretic characterization of the Henstock- Kurzweil integral; 5.6 Product variational measures; 5.7 Notes and Remarks; 6. Multipliers for the Henstock-Kurzweil integral 327 $a6.1 One-dimensional integration by parts6.2 On functions of bounded variation in the sense of Vitali; 6.3 The m-dimensional Riemann-Stieltjes integral; 6.4 A multiple integration by parts for the Henstock-Kurzweil integral; 6.5 Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral; 6.6 Riesz Representation Theorems; 6.7 Characterization of multipliers for the Henstock-Kurzweil integral; 6.8 A Banach-Steinhaus Theorem for the space of Henstock- Kurzweil integrable functions; 6.9 Notes and Remarks; 7. Some selected topics in trigonometric series 327 $a7.1 A generalized Dirichlet test7.2 Fourier series; 7.3 Some examples of Fourier series; 7.4 Some Lebesgue integrability theorems for trigonometric series; 7.5 Boas' results; 7.6 On a result of Hardy and Littlewood concerning Fourier series; 7.7 Notes and Remarks; 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series; 8.1 Regularly convergent double series; 8.2 Double Fourier series; 8.3 Some examples of double Fourier series; 8.4 A Lebesgue integrability theorem for double cosine series; 8.5 A Lebesgue integrability theorem for double sine series 327 $a8.6 A convergence theorem for Henstock-Kurzweil integrals 330 $aThe Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Per 410 0$aSeries in real analysis ;$vv. 12. 606 $aHenstock-Kurzweil integral 606 $aLebesgue integral 606 $aCalculus, Integral 615 0$aHenstock-Kurzweil integral. 615 0$aLebesgue integral. 615 0$aCalculus, Integral. 676 $a515.43 686 $aSK 430$2rvk 686 $aSK 620$2rvk 700 $aLee$b Tuo Yeong$f1967-$01574159 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788961403321 996 $aHenstock-Kurzweil integration on euclidean spaces$93850264 997 $aUNINA LEADER 00873nam0-2200277 --450 001 9910803901203321 005 20240212090345.0 010 $a978-88-15-38743-1 100 $a20240212d2023----kmuy0itay5050 ba 101 0 $aita$cita 102 $aIT 105 $ay 001yy 200 1 $aAuschwitz e gli intellettuali$ela shoah nella cultura del dopoguerra$fEnzo Traverso 210 $aBologna$cIl mulino$d2023 215 $a250 p.$d22 cm 225 1 $aStorica paperbacks$v226 610 0 $aEbrei$aPersecuzione [e] Sterminio$a1933-1945$aGiudizi [degli] Intellettuali ebrei 676 $a940.5318$v23$zita 700 1$aTraverso,$bEnzo$0144489 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910803901203321 952 $aCOLLEZ. 2079 (226)$b177/2024$fFSPBC 959 $aFSPBC 996 $aAuschwitz e gli intellettuali$9740449 997 $aUNINA