LEADER 00975nam a2200265 i 4500 001 991003091909707536 005 20020509112048.0 008 980210s1987 fr ||| | fre 020 $a2213019584 035 $ab11107972-39ule_inst 035 $aPARLA174975$9ExL 040 $aDip.to Filosofia$bita 100 1 $aRiché, Pierre$0386205 245 10$aGerbert d'Aurillac, le pape de l'an mil /$cPierre Riché 260 $a[Paris] :$bFayard,$cc1987 300 $a332 p. :$bill., geneal. tables, maps ;$c22 cm. 650 4$aPapi$xBiografie 650 4$aStoria della Chiesa$yMedioevo - 600-1500 650 4$aSylvester II, Pope, ca. 945-1003 907 $a.b11107972$b02-04-14$c28-06-02 912 $a991003091909707536 945 $aLE005 55 A 215$g1$i2005000007743$lle005$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11243259$z28-06-02 996 $aGerbert d'Aurillac, le pape de l'an mil$9857819 997 $aUNISALENTO 998 $ale005$b01-01-98$cm$da $e-$ffre$gfr $h0$i1 LEADER 02720nam 2200565 450 001 9910788898303321 005 20170918221656.0 010 $a1-4704-0685-3 035 $a(CKB)3360000000464459 035 $a(EBL)3113573 035 $a(SSID)ssj0000889228 035 $a(PQKBManifestationID)11499146 035 $a(PQKBTitleCode)TC0000889228 035 $a(PQKBWorkID)10876275 035 $a(PQKB)10152365 035 $a(MiAaPQ)EBC3113573 035 $a(RPAM)3279068 035 $a(PPN)195411579 035 $a(EXLCZ)993360000000464459 100 $a19821013h19831983 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe stability of multi-dimensional shock fronts /$fAndrew Majda 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1983] 210 4$d©1983 215 $a1 online resource (101 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vvolume 41, number 275 300 $aDescription based upon print version of record. 311 $a0-8218-2275-6 320 $aBibliography: pages 94-95. 327 $a""TABLE OF CONTENTS""; ""A?1. INTRODUCTION""; ""A?2. THE LINEARIZATION OF A CURVED SHOCK FRONT: THE MAIN THEOREMS FOR VARIABLE COEFFICIENTS""; ""A?3. A GENERAL DISCUSSION OF THE UNIFORM STABILITY CONDITIONS AND THE PHYSICAL EQUATIONS OF COMPRESSIBLE FLUID FLOW""; ""3.A Conservation Laws in a Single Space Variable and Lax's Shock Inequalities""; ""3.B Some Theoretical Remarks on Uniform Stability""; ""3.C Uniformly Stable Shock Fronts for Isentropic Gas Dynamics in Two Space Dimensions a???a??? the Proof of Proposition 2"" 327 $a""3.D The Uniform Stability of Shock Fronts for the Euler Equations of Gas Dynamics in Three Dimensions""""A?4. THE BASIC VARIABLE COEFFICIENT ESTIMATE""; ""A?5. THE EXISTENCE AND DIFFERENTIABILITY OF SOLUTIONS""; ""APPENDIX A. PSEUDOa???DIFFERENTIAL OPERATORS WITH SOBOLEV SPACE COEFFICEINTS: THE PROOF OF LEMMA 4.2""; ""APPENDIX B. KREISS' SYMMETRIZER AND SOBOLEV SPACE PARAMETERS: LEMMA 4. 3""; ""BIBLIOGRAPHY"" 410 0$aMemoirs of the American Mathematical Society ;$vv. 41, no. 275. 606 $aShock waves 606 $aDifferential equations, Hyperbolic$xNumerical solutions 615 0$aShock waves. 615 0$aDifferential equations, Hyperbolic$xNumerical solutions. 676 $a510 s 676 $a532/.0593 700 $aMajda$b Andrew$f1949-$0477021 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788898303321 996 $aThe stability of multi-dimensional shock fronts$93799773 997 $aUNINA