LEADER 02562nam 2200565 450 001 9910788892803321 005 20170821171807.0 010 $a1-4704-0492-3 035 $a(CKB)3360000000464400 035 $a(EBL)3113576 035 $a(SSID)ssj0000973402 035 $a(PQKBManifestationID)11529913 035 $a(PQKBTitleCode)TC0000973402 035 $a(PQKBWorkID)10960291 035 $a(PQKB)11115453 035 $a(MiAaPQ)EBC3113576 035 $a(RPAM)2753444 035 $a(PPN)195410998 035 $a(EXLCZ)993360000000464400 100 $a20790307h19791979 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNon-spherical principal series representations of a semisimple Lie group /$fAlfred Magnus 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1979] 210 4$dİ1979 215 $a1 online resource (61 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9290 ;$vnumber 216 300 $a"Volume 19 ... (first of 2 numbers)." 311 $a0-8218-2216-0 320 $aBibliography: pages 51-52. 327 $a""Table of Contents""; ""Introduction""; ""Chapter I""; ""Section 1. Definitions and Major Results""; ""Section 2. An Outline""; ""Chapter II""; ""Section 3. Preliminaries""; ""Section 4. The Irreducible Modules Z[sup(I?³)][sub(I??)]""; ""Section 5. Irreducibility and Cyclicity""; ""Section 6. Unitarity""; ""Section 7. An Expression for R[sup(I?³)][sub(I??)]""; ""Chapter III""; ""Section 8. Reduction to Rank One""; ""Section 9. The Rank One Case""; ""Section 10. The Diagonal Map""; ""Section 11. Finite Dimensional Representations""; ""Section 12. Calculating P[sup(I??)][sub(I?³)] for su( N,1)"" 327 $a""Chapter IV""""Section 13. The Zeros of R[sup(I?³)][sub(I??)] and P[sup(I?³)][sub(I??)]""; ""Section 14. Representations of the Group G[sub(0)]""; ""Section 15. An Application""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 216. 606 $aSemisimple Lie groups 606 $aRepresentations of groups 615 0$aSemisimple Lie groups. 615 0$aRepresentations of groups. 676 $a510/.8 s 676 $a512/.55 700 $aMagnus$b Alfred$f1951-$01545062 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788892803321 996 $aNon-spherical principal series representations of a semisimple Lie group$93799719 997 $aUNINA