LEADER 01972nam 2200565 450 001 9910788890603321 005 20180613001251.0 010 $a1-4704-0205-X 035 $a(CKB)3360000000464384 035 $a(EBL)3113540 035 $a(SSID)ssj0000888858 035 $a(PQKBManifestationID)11533780 035 $a(PQKBTitleCode)TC0000888858 035 $a(PQKBWorkID)10867691 035 $a(PQKB)11670697 035 $a(MiAaPQ)EBC3113540 035 $a(RPAM)3667150 035 $a(PPN)195410831 035 $a(EXLCZ)993360000000464384 100 $a20780104h19781978 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContractive projections in C[subscript 1] and C[subscript 00] /$fJonathan Arazy and Yaakov Friedman 210 1$aProvidence :$cAmerican Mathematical Society,$d[1978] 210 4$dİ1978 215 $a1 online resource (174 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vvolume 13, number 200 (March 1978) 300 $a"Volume 13, issue 2". 311 $a0-8218-2200-4 320 $aIncludes bibliographical references. 327 $a""f. Case 3 a??? Elementary subspaces of the forms AH[sup(n)][sub(1)](a,A?£) and DAH[sup(n)](a)""""g. Proof of theorems 2.14, 2.15 and 2.16""; ""6. ISOMETRIES FROM ELEMENTARY SUBSPACES OF C[sub(1)] INTO C[sub(1)]""; ""7. APPLICATIONS"" 410 0$aMemoirs of the American Mathematical Society ;$vnumber 200. 606 $aLinear operators 606 $aHilbert space 615 0$aLinear operators. 615 0$aHilbert space. 676 $a510/.8 s 676 $a515/.7 700 $aArazy$b Jonathan$f1942-$01486201 702 $aFriedman$b Yaakov$f1948- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788890603321 996 $aContractive projections in C and Csubscript 00$93799698 997 $aUNINA