LEADER 02256nam 2200541 450 001 9910788883603321 005 20180613001258.0 010 $a1-4704-0782-5 035 $a(CKB)3360000000464550 035 $a(EBL)3113976 035 $a(SSID)ssj0000889087 035 $a(PQKBManifestationID)11452879 035 $a(PQKBTitleCode)TC0000889087 035 $a(PQKBWorkID)10867072 035 $a(PQKB)11196255 035 $a(MiAaPQ)EBC3113976 035 $a(RPAM)4311864 035 $a(PPN)195412494 035 $a(EXLCZ)993360000000464550 100 $a20140905h19871987 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA new approach to the local embedding theorem of CR-structures for n [greater than or equal to] 4 (the local solvability for the operator [overbarred partial] B in the abstract sense) /$fTakao Akahori 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1987. 210 4$dİ1987 215 $a1 online resource (278 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 366 300 $a"May 1987, Volume 67, Number 366 (second of 3 numbers)." 311 $a0-8218-2428-7 320 $aIncludes bibliographical references. 327 $a""7.0. Preparations""""7.1. The proof of 1)[sub(v+1)]""; ""7.2. The proof of 2)[sub(v+1)]""; ""7.3. The proof of 3)[sub(v+1)]""; ""7.4. The proof of 4)[sub(v+1)]""; ""7.5. The proof of 5)[sub(v+1)]""; ""7.6. The proof of 6)[sub(v+1)]""; ""7.7. The convergence of f[sup(v)]""; ""Chapter 8. The local embedding theorem""; ""References in Part II"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 366. 606 $aEmbedding theorems 606 $aComplex manifolds 615 0$aEmbedding theorems. 615 0$aComplex manifolds. 676 $a515/.23 700 $aAkahori$b Takao$f1949-$01234710 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788883603321 996 $aA new approach to the local embedding theorem of CR-structures for n 4 (the local solvability for the operator overbarred partial B in the abstract sense)$93696193 997 $aUNINA