LEADER 03269nam 2200613 450 001 9910788874503321 005 20180613001300.0 010 $a1-4704-0856-2 035 $a(CKB)3360000000464617 035 $a(EBL)3113843 035 $a(SSID)ssj0000973386 035 $a(PQKBManifestationID)11630557 035 $a(PQKBTitleCode)TC0000973386 035 $a(PQKBWorkID)10959327 035 $a(PQKB)10336454 035 $a(MiAaPQ)EBC3113843 035 $a(RPAM)1051149 035 $a(PPN)195413164 035 $a(EXLCZ)993360000000464617 100 $a20140905h19901990 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNewton polyhedra without coordinates $eNewton polyhedra of ideals /$fBoris Youssin 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1990. 210 4$dİ1990 215 $a1 online resource (109 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 87, Number 433 300 $aDescription based upon print version of record. 311 $a0-8218-2495-3 320 $aIncludes bibliographical references at the end of each chapters. 327 $a""CONTENTS""; ""NEWTON POLYHEDRA WITHOUT COORDINATES""; ""1. Introduction""; ""Chapter 1. Integrally closed filtrations""; ""2. Definition and examples""; ""3. The language of integrally closed subalgebras""; ""4. Generators of a filtration""; ""5. Join and suspension""; ""6. Normal crossing rings and monomials""; ""7. Special filtrations and the Main Theorem""; ""Chapter 2. Contact and stably contact filtrations""; ""8. Initial forms and transversality to the normal crossing divisor""; ""9. Contact filtrations and their structure""; ""10. Galois extensions"" 327 $a""21. Some unsolved problems""""Appendices""; ""A1. Weights of a quasihomogeneous filtration are independent of the coordinate system""; ""A2. Criterion for integral closedness""; ""A3. The structure of suspension""; ""A4. Multiplication and division by monomials: Proof of the structure theorem""; ""A5. Suspension of a stably contact filtration is stably contact: Proof of (11.5)""; ""References""; ""NEWTON POLYHEDRA OF IDEALS""; ""1. Introduction""; ""2. Standard bases and the main result""; ""3. Differential operators and principal parts""; ""4. Generalized Fitting ideals"" 327 $a""5. Heuristics""""6. Generic position""; ""7. Fitting ideals and filtrations generated by standard bases""; ""8. Normalized standard bases""; ""9. Proof of the Main Theorem 2.7""; ""Appendix. Sketch of another proof""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 87, Number 433. 606 $aPolyhedral functions 606 $aFilters (Mathematics) 606 $aRings (Algebra) 606 $aIdeals (Algebra) 615 0$aPolyhedral functions. 615 0$aFilters (Mathematics) 615 0$aRings (Algebra) 615 0$aIdeals (Algebra) 676 $a510 s 700 $aYoussin$b Boris$f1959-$01486187 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788874503321 996 $aNewton polyhedra without coordinates$93705615 997 $aUNINA