LEADER 02452nam 2200589 450 001 9910788853803321 005 20180731043600.0 010 $a1-4704-0529-6 035 $a(CKB)3360000000465107 035 $a(EBL)3114093 035 $a(SSID)ssj0000889067 035 $a(PQKBManifestationID)11488381 035 $a(PQKBTitleCode)TC0000889067 035 $a(PQKBWorkID)10866180 035 $a(PQKB)11660738 035 $a(MiAaPQ)EBC3114093 035 $a(RPAM)15445998 035 $a(PPN)195418123 035 $a(EXLCZ)993360000000465107 100 $a20150417h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMinimal resolutions via algebraic discrete morse theory /$fMichael Jİ?llenbeck, Volkmar Welker 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$dİ2009 215 $a1 online resource (88 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 197, Number 923 300 $a"Volume 197, Number 923 (end of volume)." 311 $a0-8218-4257-9 320 $aIncludes bibliographical references and index. 327 $a""1. Hochschild Homology and Discrete Morse Theory""""2. Explicit Calculations of Hochschild Homology""; ""Chapter 6. Minimal (Cellular) Resolutions for (p-)Borel Fixed Ideals""; ""1. Cellular Resolutions""; ""2. Cellular Minimal Resolution for Principal Borel Fixed Ideals""; ""3. Cellular Minimal Resolution for a Class of p-Borel Fixed Ideals""; ""Appendix A. The Bar and the Hochschild Complex""; ""Appendix B. Proofs for Algebraic Discrete Morse Theory""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""P""; ""R"" 327 $a""S""""T""; ""V""; ""W"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 197, Number 923. 606 $aMorse theory 606 $aFree resolutions (Algebra) 606 $aAlgebra 615 0$aMorse theory. 615 0$aFree resolutions (Algebra) 615 0$aAlgebra. 676 $a514 700 $aJİ?llenbeck$b Michael$f1975-$01565971 702 $aWelker$b Volkmar 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788853803321 996 $aMinimal resolutions via algebraic discrete morse theory$93836152 997 $aUNINA