LEADER 03166nam 2200625 450 001 9910788853603321 005 20170816143336.0 010 $a1-4704-0523-7 035 $a(CKB)3360000000465101 035 $a(EBL)3114099 035 $a(SSID)ssj0000889230 035 $a(PQKBManifestationID)11493934 035 $a(PQKBTitleCode)TC0000889230 035 $a(PQKBWorkID)10876425 035 $a(PQKB)10888742 035 $a(MiAaPQ)EBC3114099 035 $a(RPAM)15359690 035 $a(PPN)195418069 035 $a(EXLCZ)993360000000465101 100 $a20080709h20082008 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations /$fSalah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2008] 210 4$dİ2008 215 $a1 online resource (120 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 917 300 $a"November 2008, volume 196, number 917 (fourth of 5 numbers )." 311 $a0-8218-4250-1 320 $aIncludes bibliographical references (pages 103-105). 327 $a""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""A?1.1 Basic concepts""; ""A?1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""A?1.3 Semilinear spde's: Lipschitz nonlinearity""; ""A?1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""A?2.1 Hyperbolicity of a stationary trajectory""; ""A?2.2 The nonlinear ergodic theorem"" 327 $a""A?2.3 Proof of the local stable manifold theorem""""A?2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 917. 606 $aStochastic partial differential equations 606 $aStochastic integral equations 606 $aManifolds (Mathematics) 606 $aEvolution equations 615 0$aStochastic partial differential equations. 615 0$aStochastic integral equations. 615 0$aManifolds (Mathematics) 615 0$aEvolution equations. 676 $a519.2 700 $aMohammed$b Salah-Eldin$f1946-$057498 702 $aZhang$b Tusheng$f1963- 702 $aZhao$b Huaizhong$f1964- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788853603321 996 $aThe stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations$93836150 997 $aUNINA