LEADER 03697nam 2200601 450 001 9910788849003321 005 20170816143306.0 010 $a1-4704-0373-0 035 $a(CKB)3360000000464959 035 $a(EBL)3114426 035 $a(SSID)ssj0000889125 035 $a(PQKBManifestationID)11523070 035 $a(PQKBTitleCode)TC0000889125 035 $a(PQKBWorkID)10875171 035 $a(PQKB)10828108 035 $a(MiAaPQ)EBC3114426 035 $a(RPAM)13052063 035 $a(PPN)195416619 035 $a(EXLCZ)993360000000464959 100 $a20030108d2003 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOn the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems /$fP. Lochak, J.-P. Marco, D. Sauzin 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2003. 215 $a1 online resource (162 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 775 300 $a"Volume 163, number 775 (second of 5 numbers)." 311 $a0-8218-3268-9 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; ""A? 1.1. Symplectic geometry: a short reminder""; ""A? 1.2. Hyperbolic invariant manifolds""; ""A? 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; ""A? 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; ""A? 1.5. Symplectic isomorphisms, angles and splitting forms""; ""A? 1.6. The splitting of Lagrangian submanifolds""; ""A? 1.7. Lagrangian submanifolds in a cotangent bundle"" 327 $a""A? 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds""""A? 1.9. The perturbative setting""; ""A? 1.10. Lagrangian intersections and homoclinic trajectories""; ""A? 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; ""A? 2.1. Resonant normal forms""; ""A? 2.2. Computations in the vicinity of a resonant surface""; ""A? 2.3. Splitting in a perturbative setting, variance and stability""; ""A? 2.4. General exponential estimates for the splitting matrix"" 327 $a""A? 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories""""A? 2.6. Splitting and stability""; ""Chapter 3. The Hamiltona???Jacobi Method for a Simple Resonance""; ""A? 3.1. Notation and assumptions""; ""A? 3.2. Formal solutions and the Hamiltona???Jacobi algorithm""; ""A? 3.3. Convergence and domains of analyticity""; ""A? 3.4. Exponential closeness of the invariant manifolds""; ""A? 3.5. Linear versus nonlinear splitting""; ""A? 3.6. Some variants and possible generalizations""; ""A? 3.7. A short historical tour and some concluding remarks"" 327 $a""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography "" 410 0$aMemoirs of the American Mathematical Society ;$vno. 775. 606 $aHamiltonian systems 606 $aInvariant manifolds 615 0$aHamiltonian systems. 615 0$aInvariant manifolds. 676 $a510 s 676 $a514/.74 700 $aLochak$b P$g(Pierre),$052270 702 $aMarco$b J.-P 702 $aSauzin$b D.$f1966- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788849003321 996 $aOn the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems$93836105 997 $aUNINA