LEADER 03628nam 2200589 450 001 9910788846303321 005 20180731044357.0 010 $a1-4704-0337-4 035 $a(CKB)3360000000464928 035 $a(EBL)3114545 035 $a(SSID)ssj0000910369 035 $a(PQKBManifestationID)11595672 035 $a(PQKBTitleCode)TC0000910369 035 $a(PQKBWorkID)10932358 035 $a(PQKB)11176554 035 $a(MiAaPQ)EBC3114545 035 $a(RPAM)12585662 035 $a(PPN)195416309 035 $a(EXLCZ)993360000000464928 100 $a20011109h20022002 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBasic global relative invariants for homogeneous linear differential equations /$fRoger Chalkley 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2002] 210 4$d©2002 215 $a1 online resource (223 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 744 300 $a"Volume 156, number 744 (end of volume)." 311 $a0-8218-2781-2 320 $aIncludes bibliographical references (pages 197-199) and index. 327 $a""Chapter 4. L[sub(n)] and I[sub(n,i)] as Semi-Invariants of the First Kind""""Chapter 5. V[sub(n)] and J[sub(n,i)] as Semi-Invariants of the Second Kind""; ""Chapter 6. The Coefficients of Transformed Equations""; ""6.1. Alternative formulas for c**[sub(i)](I??) in (1.5)""; ""6.2. The coefficients of a composite transformation""; ""6.3. Several examples""; ""6.4. Proof of an old observation""; ""6.5. Conditions for transformed equations""; ""6.6. Formulas for later reference""; ""Chapter 7. Formulas That Involve L[sub(n)](z) or I[sub(n,n)](z)"" 327 $a""7.1. The coefficients of (6.8) when d[sub(1)](I??) a??¡ d[sub(2)]((I??) a??¡ 0""""7.2. Derivatives for the coefficients of (6.8) when d[sub(1)](I??) a??¡ d[sub(2)]((I??) a??¡ 0""; ""7.3. Identities for the coefficients of (6.8) when d[sub(1)](I??) a??¡ d[sub(2)]((I??) a??¡ 0""; ""Chapter 8. Formulas That Involve V[sub(n)](z) or J[sub(n,n)](z)""; ""8.1. The coefficients of (6.8) when d[sub(1)](I??) a??¡ d[sub(2)]((I??) a??¡ 0""; ""8.2. Derivatives for the coefficients of (6.8) when d[sub(1)](I??) a??¡ d[sub(2)]((I??) a??¡ 0"" 327 $a""8.3. Identities for the coefficients of (6.8) when d[sub(1)](I??) a??¡ d[sub(2)]((I??) a??¡ 0""""Chapter 9. Verification of I[sub(n,n)] a??¡ J[sub(n,n)]and Various Observations""; ""9.1. Proof for the first part of the Main Theorem in Chapter 1""; ""9.2. Global sets""; ""9.3. A fourth type of invariant: an absolute invariant""; ""9.4. Laguerre-Forsyth canonical forms""; ""Chapter 10. The Local Constructions of Earlier Research""; ""10.1. Standard techniques""; ""10.2. An improved computational procedure""; ""10.3. Hindrances to earlier research"" 327 $a""Chapter 11. Relations for G[sub(i)], H[sub(i)], and L[sub(i)] That Yield Equivalent Formulas for Basic Relative Invariants"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 744. 606 $aDifferential equations, Linear 606 $aInvariants 615 0$aDifferential equations, Linear. 615 0$aInvariants. 676 $a510 s 676 $a515/.354 700 $aChalkley$b Roger$f1931-$01566861 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788846303321 996 $aBasic global relative invariants for homogeneous linear differential equations$93837791 997 $aUNINA