LEADER 02881nam 2200589 450 001 9910788845803321 005 20170918215940.0 010 $a1-4704-0336-6 035 $a(CKB)3360000000464927 035 $a(EBL)3114481 035 $a(SSID)ssj0000973922 035 $a(PQKBManifestationID)11559250 035 $a(PQKBTitleCode)TC0000973922 035 $a(PQKBWorkID)10985123 035 $a(PQKB)11352336 035 $a(MiAaPQ)EBC3114481 035 $a(RPAM)12585669 035 $a(PPN)195416295 035 $a(EXLCZ)993360000000464927 100 $a20011109h20022002 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSpectral decomposition of a covering of GL(r) $ethe Borel case /$fHeng Sun 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2002] 210 4$dİ2002 215 $a1 online resource (79 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 743 300 $a"March 2002, volume 156, number 743 (fourth of 5 numbers)." 311 $a0-8218-2775-8 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Introduction""; ""Chapter 1. Preliminaries""; ""1.1. The Group""; ""1.2. The Diagonal Subgroup and Its Representations""; ""1.3. Intertwining Operators""; ""1.4. Product of Two Intertwining Operators""; ""1.5. Normalization of Intertwining Operators""; ""1.6. The Special Value of an Intertwining Operator""; ""1.7. The Langlands Quotient""; ""Chapter 2. Local Intertwining Operators""; ""2.1. Irreducibility and Intertwining Operators""; ""2.2. Speh Modules (p-adic Case)""; ""2.3. The Principal Lemma""; ""2.4. Generalization and Completion of the Proof"" 327 $a""2.5. The Complex Case""""Chapter 3. Spectrum Associated with the Diagonal Subgroup""; ""3.1. The Global Metaplectic Group""; ""3.2. Representations of Metaplectic Groups""; ""3.3. Statement of the Problem""; ""3.4. Representations of the Diagonal Subgroup""; ""3.5. The Main Theorem""; ""Chapter 4. Contour Integration (after MW)""; ""4.1. Holomorphy at the Origin of a Singular Hyper-plane""; ""4.2. Corollaries""; ""4.3. Residues by Induction""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 743. 606 $aEisenstein series 606 $aSpectral theory (Mathematics) 606 $aDecomposition (Mathematics) 615 0$aEisenstein series. 615 0$aSpectral theory (Mathematics) 615 0$aDecomposition (Mathematics) 676 $a510 s 676 $a515/.243 700 $aSun$b Heng$f1968-$01566858 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788845803321 996 $aSpectral decomposition of a covering of GL(r)$93837786 997 $aUNINA