LEADER 02835nam 2200661Ia 450 001 9910456900103321 005 20200520144314.0 010 $a1-282-44094-2 010 $a9786612440946 010 $a981-281-905-3 035 $a(CKB)2550000000001847 035 $a(EBL)477134 035 $a(OCoLC)557658082 035 $a(SSID)ssj0000337615 035 $a(PQKBManifestationID)11929326 035 $a(PQKBTitleCode)TC0000337615 035 $a(PQKBWorkID)10293166 035 $a(PQKB)10563801 035 $a(MiAaPQ)EBC477134 035 $a(WSP)00000854 035 $a(Au-PeEL)EBL477134 035 $a(CaPaEBR)ebr10361799 035 $a(CaONFJC)MIL244094 035 $a(EXLCZ)992550000000001847 100 $a20080910d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFat manifolds and linear connections$b[electronic resource] /$fAlessandro De Paris, Alexandre Vinogradov 210 $aHackensack, NJ $cWorld Scientific$dc2009 215 $a1 online resource (310 p.) 300 $aDescription based upon print version of record. 311 $a981-281-904-5 320 $aIncludes bibliographical references (p. 281-282) and index. 327 $aPreface; Foreword; Contents; 0. Elements of Differential Calculus over Commutative Algebras; 1. Basic Differential Calculus on Fat Manifolds; 2. Linear Connections; 3. Covariant Differential; 4. Cohomological Aspects of Linear Connections; Bibliography; List of Symbols; Index 330 $aIn this unique book, written in a reasonably self-contained manner, the theory of linear connections is systematically presented as a natural part of differential calculus over commutative algebras. This not only makes easy and natural numerous generalizations of the classical theory and reveals various new aspects of it, but also shows in a clear and transparent manner the intrinsic structure of the associated differential calculus. The notion of a "fat manifold" introduced here then allows the reader to build a well-working analogy of this "connection calculus" with the usual one. 606 $aDifferential calculus 606 $aCommutative algebra 606 $aManifolds (Mathematics) 606 $aAlgebras, Linear 608 $aElectronic books. 615 0$aDifferential calculus. 615 0$aCommutative algebra. 615 0$aManifolds (Mathematics) 615 0$aAlgebras, Linear. 676 $a515/.33 676 $a516.35 700 $aDe Paris$b Alessandro$0918503 701 $aVinogradov$b A. M$g(Aleksandr Mikhai?lovich)$0918504 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456900103321 996 $aFat manifolds and linear connections$92059643 997 $aUNINA LEADER 01221nam0 22003253i 450 001 CAG0840707 005 20231121125421.0 100 $a20150310d1992 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aArmando Borghi e gli anarchici italiani, 1900-1922$fEmilio Falco$gprefazione di Enzo Santarelli 210 $aRoma$cEdizioni Associate$d1992 215 $aX, 235 p.$d21 cm. 225 | $a˜Il œpresente come storia 410 0$1001RAV0171163$12001 $a˜Il œpresente come storia 606 $aBorghi, Armando$2FIR$3RMLC230385$9I 606 $aAnarchia$xItalia$x1900-1922$2FIR$3RMLC290686$9I 676 $a335.830945$9$v21 700 1$aFalco$b, Emilio$3MILV006618$4070$0560383 702 1$aSantarelli$b, Enzo$3CFIV006303 801 3$aIT$bIT-01$c20150310 850 $aIT-FR0017 899 $aBiblioteca umanistica Giorgio Aprea$bFR0017 $eN 912 $aCAG0840707 950 0$aBiblioteca umanistica Giorgio Aprea$d 52DES 335 Fal.Arm.$e 52FLS0000376565 VMB RS $fA $h20150310$i20150310 977 $a 52 996 $aArmando Borghi e gli anarchici italiani, 1900-1922$93604239 997 $aUNICAS LEADER 03158nam 2200613 450 001 9910788845303321 005 20170918220737.0 010 $a1-4704-0331-5 035 $a(CKB)3360000000464922 035 $a(EBL)3114551 035 $a(SSID)ssj0000973573 035 $a(PQKBManifestationID)11516433 035 $a(PQKBTitleCode)TC0000973573 035 $a(PQKBWorkID)10959885 035 $a(PQKB)11069646 035 $a(MiAaPQ)EBC3114551 035 $a(RPAM)12501774 035 $a(PPN)195416244 035 $a(EXLCZ)993360000000464922 100 $a20010814h20022002 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeneralized Whittaker functions on SU(2,2) with respect to the Siegel parabolic subgroup /$fYasuro Gon 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2002] 210 4$d©2002 215 $a1 online resource (130 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 738 300 $a"January 2002." 300 $a"Volume 155, number 738 (fourth of 5 numbers)." 311 $a0-8218-2763-4 320 $aIncludes bibliographical references (pages 115-116). 327 $a""Contents""; ""Chapter 1. Introduction""; ""1. Introduction""; ""Chapter 2. Generalized Whittaker functions and representation theory of SU(2,2)""; ""2. Definition of the generalized Whittaker functions""; ""3. Structure theory for SU(2,2) and its Lie algebra""; ""4. Representations of K""; ""5. Irreducible SU(I??)-modules""; ""6. Explicit description of Whittaker functions""; ""7. Radial part of the shift operators""; ""Chapter 3. Generalized Whittaker functions for P[sub(J)] principal series representations""; ""8. Generalized Whittaker functions for P[sub(J)]-principal series"" 327 $a""Chapter 4. Generalized Whittaker functions for the discrete series representations""""9. Generalized Whittaker functions for the discrete series representations""; ""10. Generalized Whittaker functions for the holomorphic discrete series representations""; ""11. Generalized Whittaker functions for the large discrete series representations""; ""12. Generalized Whittaker functions for the middle discrete representations""; ""13. Generalized Whittaker functions for the middle discrete series associated with definite H[sub(I??)]"" 327 $a""14. Generalized Whittaker functions for the middle discrete series associated with indefinite H[sub(I??)]""""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 738. 606 $aCoulomb functions 606 $aForms, Modular 606 $aRepresentations of groups 615 0$aCoulomb functions. 615 0$aForms, Modular. 615 0$aRepresentations of groups. 676 $a510 s 676 $a512/.73 700 $aGon$b Yasuro$01566855 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788845303321 996 $aGeneralized Whittaker functions on SU(2,2) with respect to the Siegel parabolic subgroup$93837781 997 $aUNINA