LEADER 01449cam a22003854i 4500 001 991002810889707536 008 150720s2014 riua b 001 0 eng d 020 $a9780821843550 (alk. paper) 035 $ab14235882-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 0 $a512.482$223 084 $aLC QA252.3.S66 084 $aAMS 17B05 084 $aAMS 17B20 084 $aAMS 17B30 084 $aAMS 17B40 084 $aAMS 81R05 084 $aAMS 70H 084 $aAMS 70S 084 $aAMS 37J15 100 1 $aSnobl, Libor$0480908 245 10$aClassification and identification of Lie algebras /$cLibor Snobl, Pavel Winternitz 260 $aProvidence, Rhode Island :$bAmerican Mathematical Society,$cc2014 300 $axi, 306 p. :$bill. ;$c27 cm 440 0$aCRM monograph series, ISSN 10658599 ;$v33 504 $aIncludes bibliographical references (p. 299-304) and index 650 0$aLie algebras 650 0$aLie superalgebras 700 1 $aWinternitz, Pavel$eauthor$4http://id.loc.gov/vocabulary/relators/aut$052404 907 $a.b14235882$b21-07-15$c20-07-15 912 $a991002810889707536 945 $aLE013 17B SNO11 (2014)$g1$i2013000225364$lle013$op$pE120.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i15687491$z21-07-15 996 $aClassification and identification of Lie algebras$91443899 997 $aUNISALENTO 998 $ale013$b20-07-15$cm$da $e $feng$griu$h0$i0 LEADER 02975nam 2200721 450 001 9910788825303321 005 20230803200432.0 010 $a1-5015-0024-4 010 $a1-61451-699-5 024 7 $a10.1515/9781614516996 035 $a(CKB)3360000000515272 035 $a(EBL)1663123 035 $a(SSID)ssj0001402529 035 $a(PQKBManifestationID)11952087 035 $a(PQKBTitleCode)TC0001402529 035 $a(PQKBWorkID)11361177 035 $a(PQKB)11785681 035 $a(MiAaPQ)EBC1663123 035 $a(DE-B1597)426946 035 $a(OCoLC)979582170 035 $a(DE-B1597)9781614516996 035 $a(Au-PeEL)EBL1663123 035 $a(CaPaEBR)ebr11006225 035 $a(CaONFJC)MIL807271 035 $a(OCoLC)898769614 035 $a(EXLCZ)993360000000515272 100 $a20140822h20142014 uy| 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 12$aA movement theory of anaphora /$fJun Abe 210 1$aBoston :$cDe Gruyter Mouton,$d[2014] 210 4$dİ2014 215 $a1 online resource (224 p.) 225 1 $aStudies in Generative Grammar,$x0167-4331 ;$v120 300 $aDescription based upon print version of record. 311 $a1-61451-700-2 311 $a1-61451-779-7 320 $aIncludes bibliographical references (pages 208-212) and index. 327 $tFront matter --$tPreface --$tContents --$t1. Introduction --$t2. Basic Architecture of Deriving Anaphoric Relations via Move --$t3. Deriving Cases of Barss's (1986) Chain Obviation Condition --$t4. Do A- and A'-Movement Reconstruct? --$t5. Locality of Empty Pronouns in Japanese --$t6. Evidence for Operator Movement of Pro --$t7. An Extension to the NOC Cases of PRO --$t8. A Movement Theory of Reflexives --$t9. Conclusions --$tReferences --$tIndex 330 $aUnder the tenet shared by Hornstein and Kayne that rules of construal need to be recaptured by the operation Move, this book aims to construct a movement theory of anaphora according to which anaphoric relations are established through movement of pro. This theory has significant theoretical implications for reconstruction effects and pro-drop phenomena. It has brought binding theory into the realm of the Minimalist Program. 410 0$aStudies in generative grammar ;$v120. 606 $aAnaphora (Linguistics) 606 $aGenerative grammar 606 $aGrammar, Comparative and general 610 $aAnaphora. 610 $aPro-Drop. 610 $aResumptive Strategy. 610 $aStrong Crossover. 615 0$aAnaphora (Linguistics) 615 0$aGenerative grammar. 615 0$aGrammar, Comparative and general. 676 $a401/.456 700 $aAbe$b Jun$f1946-$0855952 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788825303321 996 $aA movement theory of anaphora$93764906 997 $aUNINA