LEADER 03658nam 2200697 450 001 9910788820303321 005 20230807210931.0 010 $a3-11-039090-6 010 $a3-11-026889-2 024 7 $a10.1515/9783110268898 035 $a(CKB)3360000000514892 035 $a(EBL)1663180 035 $a(SSID)ssj0001530691 035 $a(PQKBManifestationID)12559968 035 $a(PQKBTitleCode)TC0001530691 035 $a(PQKBWorkID)11529905 035 $a(PQKB)10446789 035 $a(MiAaPQ)EBC1663180 035 $a(DE-B1597)173732 035 $a(OCoLC)921228113 035 $a(OCoLC)979970990 035 $a(DE-B1597)9783110268898 035 $a(Au-PeEL)EBL1663180 035 $a(CaPaEBR)ebr11087965 035 $a(CaONFJC)MIL821097 035 $a(EXLCZ)993360000000514892 100 $a20150820h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aGlobal affine differential geometry of hypersurfaces /$fAn-Min Li [and three others] 205 $aSecond revised and extended edition. 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2015. 210 4$d©2015 215 $a1 online resource (378 p.) 225 1 $aDe Gruyter Expositions in Mathematics,$x0938-6572 ;$vVolume 11 300 $aDescription based upon print version of record. 311 $a3-11-026667-9 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tIntroduction -- $t1. Preliminaries and basic structural aspects -- $t2. Local equiaffine hypersurface theory -- $t3. Affine hyperspheres -- $t4. Rigidity and uniqueness theorems -- $t5. Variational problems and affine maximal surfaces -- $t6. Hypersurfaces with constant affine Gauß-Kronecker curvature -- $t7. Geometric inequalities -- $tA. Basic concepts from differential geometry -- $tB. Laplacian comparison theorem -- $tBibliography -- $tIndex -- $tBackmatter 330 $aThis book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry - as differential geometry in general - has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof. 410 0$aDe Gruyter expositions in mathematics ;$vVolume 11. 606 $aGlobal differential geometry 606 $aHypersurfaces 610 $aAffine differential geometry. 610 $aGlobal differential geometry. 610 $aHypersurfaces. 615 0$aGlobal differential geometry. 615 0$aHypersurfaces. 676 $a516.3/62 700 $aLi$b An-Min, $0726115 702 $aLi$b Anmin 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788820303321 996 $aGlobal affine differential geometry of hypersurfaces$93764866 997 $aUNINA LEADER 02920nam 2200649 450 001 9910831184103321 005 20230125232357.0 010 $a1-118-59039-2 010 $a1-118-59041-4 024 7 $a10.1002/9781118590447 035 $a(CKB)2670000000355978 035 $a(EBL)1178711 035 $a(SSID)ssj0000873599 035 $a(PQKBManifestationID)11536719 035 $a(PQKBTitleCode)TC0000873599 035 $a(PQKBWorkID)10877328 035 $a(PQKB)10694453 035 $a(MiAaPQ)EBC1178711 035 $a(CaBNVSL)mat06558563 035 $a(IDAMS)0b00006481dc6f4b 035 $a(IEEE)6558563 035 $a(OCoLC)844924534 035 $a(PPN)273135023 035 $a(EXLCZ)992670000000355978 100 $a20151222d2013 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIPv6 deployment and management /$fTimothy Rooney, Michael Dooley 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons Inc.,$d2013. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2013] 215 $a1 online resource (275 p.) 225 1 $aIEEE press series on networks and services management ;$v22 300 $aDescription based upon print version of record. 311 $a1-118-59044-9 311 $a1-118-38720-1 320 $aIncludes bibliographical references and index. 327 $aIPv6 Deployment Drivers -- IPv6 Overview -- IPv4/IPv6 Co-Existence Technologies -- IPv6 Readiness Assessment -- IPv6 Address Planning -- IPv6 Security Planning -- IPv6 Network Management Planning -- Managing the Deployment -- Managing the IPv4/IPv6 Network -- IPv6 and the Future Internet -- Appendix: IPv6 Readiness Assessment Boilerplate Revision 1. 330 $a A guide for understanding, deploying, and managing Internet Protocol version 6 The growth of the Internet has created a need for more addresses than are available with Internet Protocol version 4 (IPv4)-the protocol currently used to direct almost all Internet traffic. Internet Protocol version 6 (IPv6)-the new IP version intended to ultimately succeed IPv4-will expand the addressing capacity of the Internet to support the explosive growth of users and devices on the Internet as well as add flexibility to allocating addresses and efficiency for routing traffic. IPv6 Deploy 410 0$aIEEE press series on networks and services management ;$v22 606 $aTCP/IP (Computer network protocol) 606 $aInternet addresses 615 0$aTCP/IP (Computer network protocol) 615 0$aInternet addresses. 676 $a004.6 676 $a004.6/2068 700 $aRooney$b Tim$0845552 701 $aRooney$b Timothy$0521410 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910831184103321 996 $aIPv6 deployment and management$94040413 997 $aUNINA