LEADER 03415nam 2200769 450 001 9910788810403321 005 20200520144314.0 010 $a3-11-036569-3 010 $a3-11-039134-1 024 7 $a10.1515/9783110365696 035 $a(CKB)3360000000515424 035 $a(EBL)1789553 035 $a(SSID)ssj0001437172 035 $a(PQKBManifestationID)11799440 035 $a(PQKBTitleCode)TC0001437172 035 $a(PQKBWorkID)11444795 035 $a(PQKB)11411912 035 $a(DE-B1597)428180 035 $a(OCoLC)1013949401 035 $a(OCoLC)904457981 035 $a(DE-B1597)9783110365696 035 $a(MiAaPQ)EBC1789553 035 $a(Au-PeEL)EBL1789553 035 $a(CaPaEBR)ebr11049508 035 $a(CaONFJC)MIL808062 035 $a(OCoLC)905378425 035 $a(PPN)187997705 035 $a(EXLCZ)993360000000515424 100 $a20150122h20152015 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPositive dynamical systems in discrete time $etheory, models, and applications by /$fUlrich Krause 210 1$aBerlin ;$aBoston :$cWalter de Gruyter GmbH & Co., KG,$d[2015] 210 4$dİ2015 215 $a1 online resource (366 p.) 225 1 $aDe Gruyter studies in mathematics ;$v62 300 $aDescription based upon print version of record. 311 $a3-11-036571-5 311 $a3-11-036975-3 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tPreface -- $tContents -- $tNotation -- $tList of Figures -- $t1. How positive discrete dynamical systems do arise -- $t2. Concave Perron-Frobenius theory -- $t3. Internal metrics on convex cones -- $t4. Contractive dynamics on metric spaces -- $t5. Ascending dynamics in convex cones of infinite dimension -- $t6. Limit set trichotomy -- $t7. Non-autonomous positive systems -- $t8. Dynamics of interaction: opinions, mean maps, multi-agent coordination, and swarms -- $tIndex -- $tBackmatter 330 $aThis book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA) 410 0$aDe Gruyter studies in mathematics ;$v62. 606 $aArithmetic$xFoundations$vTextbooks 606 $aSet theory$vTextbooks 610 $a(Concave) Perron-Frobenius Theory. 610 $aIteration of Means. 610 $aNonautonomous Dynamical Systems. 610 $aNonlinear Difference Equations. 610 $aNonlinear Positive Operators. 610 $aOpinion Dynamics. 610 $aSwarm Dynamics. 615 0$aArithmetic$xFoundations 615 0$aSet theory 676 $a515/.39 686 $aSK 580$2rvk 700 $aKrause$b Ulrich$f1940-$01537681 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788810403321 996 $aPositive dynamical systems in discrete time$93787109 997 $aUNINA