LEADER 02996nam 2200529 450 001 9910788797403321 005 20220819004647.0 010 $a0-8218-8164-7 010 $a0-8218-4649-3 035 $a(CKB)3240000000070010 035 $a(EBL)3113324 035 $a(SSID)ssj0000629297 035 $a(PQKBManifestationID)11393257 035 $a(PQKBTitleCode)TC0000629297 035 $a(PQKBWorkID)10719224 035 $a(PQKB)10290852 035 $a(MiAaPQ)EBC3113324 035 $a(RPAM)15514853 035 $a(PPN)197108121 035 $a(EXLCZ)993240000000070010 100 $a20081107h20092009 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aErgodic theory $eProbability and Ergodic Theory Workshops, February 15-18, 2007, February 14-17, 2008, University of North Carolina, Chapel Hill /$fIdris Assani, editor 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2009] 210 4$d©2009 215 $a1 online resource (171 p.) 225 1 $aContemporary mathematics,$v485$x0271-4132 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references. 327 $aContents -- Preface -- Injectivity of the Dubins-Freedman construction of random distributions -- A maximal inequality for the tail of the bilinear Hardy-Littlewood function -- Almost sure convergence of weighted sums of independent random variables -- Recurrence, ergodicity and invariant measures for cocycles over a rotation -- 1. Invariant measures, regularity of a cocycle -- 2. Growth of the ergodic sums over a rotation, application to recurrence -- 3. Examples of ergodic BV Rd-cocycles -- 4. Examples of non-regular cocycles -- 5. Appendix : A Diophantine property for (I?±, I?²) -- References -- Examples of recurrent or transient stationary walks in Rd over a rotation of T2 -- 1. A sufficient condition of recurrence for stationary walks -- 2. Series with small denominators -- 3. Growth in norm ll ll2 of the ergodic sums and recurrence -- 4. An example of transient cocycle -- References -- A short proof of the unique ergodicity of horicyclic flows -- A-periodic order via dynamical systems: Diffraction for sets of finite local complexity -- Laws of iterated logarithm for weighted sums of iid random variables -- Homeomorphic Bernoulli trial measures and ergodic theory -- Distinguishing transformations by averaging methods -- Some open problems. 410 0$aContemporary mathematics,$v485$x0271-4132 606 $aErgodic theory$vCongresses 615 0$aErgodic theory 676 $a515/.48 702 $aAssani$b Idris 712 12$aChapel Hill Ergodic Theory Workshop$f(2008 :$eUniversity of North Carolina, Chapel Hill), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788797403321 996 $aErgodic theory$980545 997 $aUNINA LEADER 01745nas 2200481-a 450 001 996216105103316 005 20240413024542.0 035 $a(CKB)111035580858004 035 $a(CONSER)sn-93035366- 035 $a(EXLCZ)99111035580858004 100 $a19930305a19939999 --- - 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aLatin America monitor$iBrazil 210 $aLondon $cBusiness Monitor International$d1993- 215 $a1 online resource 300 $aTitle from caption. 311 08$aPrint version: Latin America monitor. 0969-5966 (DLC)sn 93035366 (OCoLC)27671488 517 1 $aBrazil 517 1 $aLAM 531 $aLATIN AMERICA MONITOR BRAZIL MONITOR 531 $aLATIN AMERICA MONITOR 531 0 $aLat. Am. monit., Braz. 606 $aEconomic history$2fast$3(OCoLC)fst00901974 606 $aPolitics and government$2fast$3(OCoLC)fst01919741 607 $aBrazil$xEconomic conditions$y1985-$vPeriodicals 607 $aBrazil$xPolitics and government$y1985-2002$vPeriodicals 607 $aBrazil$xPolitics and government$y2003-$vPeriodicals 607 $aBrasil$xPolítica y gobierno$y1985-$vPublicaciones periódicas 607 $aBrasil$xCondiciones económicas$y1985-$vPublicaciones periódicas 607 $aBrazil$2fast$1https://id.oclc.org/worldcat/entity/E39QbtfRB9KGtqfkFTFbfB77QY 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 7$aEconomic history. 615 7$aPolitics and government 712 02$aBusiness Monitor International. 906 $aJOURNAL 912 $a996216105103316 920 $aexl_impl conversion 996 $aLatin America monitor$91886159 997 $aUNISA