LEADER 02261nam 2200541 450 001 9910788754003321 005 20170816143339.0 010 $a1-4704-0094-4 035 $a(CKB)3360000000464701 035 $a(EBL)3113831 035 $a(SSID)ssj0000888793 035 $a(PQKBManifestationID)11566302 035 $a(PQKBTitleCode)TC0000888793 035 $a(PQKBWorkID)10865998 035 $a(PQKB)10239603 035 $a(MiAaPQ)EBC3113831 035 $a(RPAM)1581337 035 $a(PPN)195414004 035 $a(EXLCZ)993360000000464701 100 $a20140904h19941994 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBehavior of distant maximal geodesics in finitely connected complete 2-dimensional Riemannian manifolds /$fTakashi Shioya 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1994. 210 4$dİ1994 215 $a1 online resource (90 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 108, Number 517 300 $aDescription based upon print version of record. 311 $a0-8218-2578-X 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Abstract""; ""Acknowledgement""; ""Introduction""; ""1. The semi-regular curves in a differentiable plane""; ""2. Statement of main results and examples""; ""3. Some applications of the Gauss-Bonnet theorem""; ""4. Semi-regularity of distant geodesies""; ""5. Almost regularity of distant geodesies""; ""6. The visual diameter""; ""7. Distant geodesies in a finitely connected manifold with finitely connected boundary""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 108, Number 517. 606 $aRiemannian manifolds 606 $aGeodesics (Mathematics) 615 0$aRiemannian manifolds. 615 0$aGeodesics (Mathematics) 676 $a510 s 700 $aShioya$b Takashi$f1963-$01521072 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788754003321 996 $aBehavior of distant maximal geodesics in finitely connected complete 2-dimensional Riemannian manifolds$93759963 997 $aUNINA