LEADER 02433nam 2200577 450 001 9910788749103321 005 20170816143323.0 010 $a1-4704-0425-7 035 $a(CKB)3360000000465008 035 $a(EBL)3114111 035 $a(SSID)ssj0000973413 035 $a(PQKBManifestationID)11602800 035 $a(PQKBTitleCode)TC0000973413 035 $a(PQKBWorkID)10959980 035 $a(PQKB)11615649 035 $a(MiAaPQ)EBC3114111 035 $a(RPAM)13763463 035 $a(PPN)195417127 035 $a(EXLCZ)993360000000465008 100 $a20041027h20052005 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOn dynamical Poisson groupoids I /$fLuen-Chau Li, Serge Parmentier 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2005] 210 4$dİ2005 215 $a1 online resource (86 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 824 300 $a"Volume 174, number 824 (end of 4 numbers)." 311 $a0-8218-3673-0 320 $aIncludes bibliographical references (pages 71-72). 327 $a""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. A class of biequivariant Poisson groupoids""; ""2.1. Preliminaries""; ""2.2. Trivial Lie groupoids in C[sub(U)]""; ""Chapter 3. Duality""; ""3.1. Duality of Poisson groupoids""; ""3.2. The dual of a dynamical Poisson groupoid""; ""Chapter 4. An explicit case study of duality""; ""Chapter 5. Coboundary dynamical Poisson groupoids - the constant r-matrix case""; ""5.1. The dual Poisson groupoid""; ""5.2. Construction of the associated symplectic double groupoid""; ""Appendix""; ""A.1. Proof of Proposition 2.2.3"" 327 $a""A.2. Proof of Theorem 2.2.5 (b)""""A.3. Proof of Proposition 3.2.1""; ""A.4. Proof of the coisotropy in Theorem 5.1.4""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 824. 606 $aPoisson manifolds 606 $aPseudogroups 615 0$aPoisson manifolds. 615 0$aPseudogroups. 676 $a510 s 676 $a512/.2 700 $aLi$b Luen-Chau$f1954-$01521047 702 $aParmentier$b Serge$f1961- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788749103321 996 $aOn dynamical Poisson groupoids I$93759916 997 $aUNINA