LEADER 04288nam 2200577 450 001 9910788644303321 005 20220822052301.0 010 $a0-8218-7750-X 010 $a0-8218-5493-3 035 $a(CKB)3240000000069688 035 $a(MH)004036872-6 035 $a(SSID)ssj0000712478 035 $a(PQKBManifestationID)11472148 035 $a(PQKBTitleCode)TC0000712478 035 $a(PQKBWorkID)10644544 035 $a(PQKB)11556646 035 $a(MiAaPQ)EBC5295197 035 $a(WaSeSS)Ind00039523 035 $a(RPAM)2998748 035 $a(PPN)19710486X 035 $a(EXLCZ)993240000000069688 100 $a19931109h19941994 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCommutative algebra $esyzygies, multiplicities, and birational algebra /$fWilliam J. Heinzer, Craig L. Huneke, Judith D. Sally, editors 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1994] 210 4$dİ1994 215 $a1 online resource (vii, 444 p. )$cill. ; 225 1 $aContemporary mathematics,$v159$x0271-4132 300 $a"The conference Commutative Algebra: Syzygies, Multiplicities and Birational Algebra was one of the 1992 AMS-SIAM-IMS Summer Research Conferences in the Mathematical Sciences which were held at Mt. Holyoke College in South Hadley, Massachusetts"--Pref. 311 $a0-8218-5188-8 320 $aIncludes bibliographical references. 327 $tGrothendieck's localization problem /$rLuchezar L. Avramov and Hans-Bjorn Foxby --$tA simple proof of Grothendieck's theorem on the parafactoriality of local rings /$rFrederick Call and Gennady Lyubeznik --$tResolutions with a given Hilbert function /$rHara Charalambous and E. Graham Evans, Jr. --$tComplete ideals in algebra and geometry /$rSteven Dale Cutkosky --$tOn the Cohen-Macaulay type of perfect ideals /$rJ. Elias, A.V. Geramita and G. Valla --$tOn the Gorensteinness of graded rings associated to ideals of analytic deviation one /$rShiro Goto and Yukio Nakamura --$tPrime ideals in birational extension of polynomial rings /$rWilliam J. Heinzer, David Lantz and Sylvia M. Wiegand --$tOn the index of a homogeneous Gorenstein ring /$rJurgen Herzog --$tSolid closure /$rMelvin Hochster --$tTight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure /$rMelvin Hochster --$tIndecomposable canonical modules and connectedness /$rMelvin Hochster and Craig Huneke. --$tMultiplicities in graded rings I: The general theory /$rD. Kirby and D. Rees --$tPfaffian identities, with applications to free resolutions, DG-algebras, and algebras with straightening law /$rAndrew R. Kustin --$tProximity inequalities for complete ideals in two-dimensional regular local rings /$rJoseph Lipman --$tCohomological annihilators and Castelnuovo-Mumford regularity /$rUwe Nagel and Peter Schenzel --$tLocal-global principle for annihilation of local cohomology /$rK.N. Raghavan --$tMultiplicities and Chern classes /$rPaul C. Roberts --$tA computation of local cohomology /$rPaul C. Roberts --$tAlgebra structures for graded free resolutions /$rHema Srinivasan --$tPrimary decompositions of powers of ideals /$rIrena Swanson --$tArtin-Nagata properties and reductions of ideals /$rBernd Ulrich --$tHilbert functions, analytic spread, and Koszul homology /$rWolmer V. Vasconcelos --$tInfinite cyclic covers of strongly F-regular rings /$rKei-ichi Watanabe --$tTorsion in Picard groups of affine rings /$rRoger Wiegand. 410 0$aContemporary mathematics (American Mathematical Society).$v159$x0271-4132 606 $aCommutative algebra$vCongresses 615 0$aCommutative algebra 676 $a512/.24 702 $aHeinzer$b William J. 702 $aHuneke$b C$g(Craig), 702 $aSally$b Judith D. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788644303321 996 $aCommutative algebra$980108 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress