LEADER 04518nam 2200577 450 001 9910788618203321 005 20220524023241.0 010 $a0-8218-8752-1 035 $a(CKB)3360000000464080 035 $a(EBL)3114420 035 $a(SSID)ssj0000889262 035 $a(PQKBManifestationID)11478763 035 $a(PQKBTitleCode)TC0000889262 035 $a(PQKBWorkID)10876279 035 $a(PQKB)11557243 035 $a(MiAaPQ)EBC3114420 035 $a(RPAM)17131899 035 $a(PPN)19541909X 035 $a(EXLCZ)993360000000464080 100 $a20150416h20122012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA theory of generalized Donaldson-Thomas invariants /$fDominic Joyce, Yinan Song 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2012. 210 4$dİ2012 215 $a1 online resource (199 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 217, Number 1020 300 $a"May 2012, Volume 217, Number 1020 (second of 4 numbers)." 311 $a0-8218-5279-5 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Introduction -- 1.1. Brief sketch of background -- 1.2. Behrend functions of schemes and stacks, from chapter 4 -- 1.3. Summary of the main results in chapter 5 -- 1.4. Examples and applications in chapter 6 -- 1.5. Extension to quivers with superpotentials in chapter 7 -- 1.6. Relation to the work of Kontsevich and Soibelman [63] -- Chapter 2. Constructible functions and stack functions -- 2.1. Artin stacks and (locally) constructible functions -- 2.2. Stack functions -- 2.3. Operators and projections -- 2.4. Stack function spaces -- Chapter 3. Background material from [51-54] -- 3.1. Ringel-Hall algebras of an abelian category -- 3.2. (Weak) stability conditions on -- 3.3. Changing stability conditions and algebra identities -- 3.4. Calabi-Yau 3-folds and Lie algebra morphisms -- 3.5. Invariants and transformation laws -- Chapter 4. Behrend functions and Donaldson-Thomas theory -- 4.1. The definition of Behrend functions -- 4.2. Milnor fibres and vanishing cycles -- 4.3. Donaldson-Thomas invariants of Calabi-Yau 3-folds. -- 4.4. Behrend functions and almost closed 1-forms -- 4.5. Characterizing for Calabi-Yau 3-folds -- Chapter 5. Statements of main results -- 5.1. Local description of the moduli of coherent sheaves -- 5.2. Identities on Behrend functions of moduli stacks -- 5.3. A Lie algebra morphism and generalized Donaldson-Thomas invariants -- 5.4. Invariants counting stable pairs, and deformation-invariance -- Chapter 6. Examples, applications, and generalizations. -- 6.1. Computing and in examples 6.2. Integrality properties -- 6.3. Counting dimension zero sheaves -- 6.4. Counting dimension one sheaves -- 6.5. Why it all has to be so complicated: an example -- 6.6. Stability and invariants -- 6.7. Extension to noncompact Calabi-Yau 3-folds -- 6.8. Configuration operations and extended Donaldson-Thomas invariants -- Chapter 7. Donaldson-Thomas theory for quivers with superpotentials -- 7.1. Introduction to quivers -- 7.2. Quivers with superpotentials, and 3-Calabi-Yau categories. -- 7.3. Behrend function identities, Lie algebra morphisms, and Donaldson-Thomas type invariants 7.4. Pair invariants for quivers -- 7.5. Computing in examples -- 7.6. Integrality of for generic -- Chapter 8. The proof of Theorem 5.3 -- Chapter 9. The proofs of Theorems 5.4 and 5.5 -- 9.1. Holomorphic structures on a complex vector bundle -- 9.2. Moduli spaces of analytic vector bundles on -- 9.3. Constructing a good local atlas for near -- 9.4. Moduli spaces of algebraic vector bundles on. -- 9.5. Identifying versal families of holomorphic structures and algebraic vector bundles. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 217, Number 1020. 606 $aDonaldson-Thomas invariants 606 $aCalabi-Yau manifolds 606 $aSheaf theory 615 0$aDonaldson-Thomas invariants. 615 0$aCalabi-Yau manifolds. 615 0$aSheaf theory. 676 $a516.3/52 700 $aJoyce$b Dominic D.$066989 702 $aSong$b Yinan$f1977- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788618203321 996 $aA theory of generalized Donaldson-Thomas invariants$93796229 997 $aUNINA