LEADER 02812nam 2200589 450 001 9910788617003321 005 20180731044135.0 010 $a0-8218-9955-4 035 $a(CKB)3360000000464068 035 $a(EBL)3113654 035 $a(SSID)ssj0000973502 035 $a(PQKBManifestationID)11582532 035 $a(PQKBTitleCode)TC0000973502 035 $a(PQKBWorkID)10960124 035 $a(PQKB)10825147 035 $a(MiAaPQ)EBC3113654 035 $a(RPAM)327121 035 $a(PPN)195410378 035 $a(EXLCZ)993360000000464068 100 $a20750530h19751975 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFacing up to arrangements $eface-count formulas for partitions of space by hyperplanes /$fThomas Zaslavsky 210 1$aProvidence :$cAmerican Mathematical Society,$d[1975] 210 4$dİ1975 215 $a1 online resource (115 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vvolume 1, issue 1, number 154 (January 1975) 300 $a"Volume 1, issue 1." 300 $aSubstantially the author's thesis, Massachusetts Institute of Technology. 311 $a0-8218-1854-6 320 $aIncludes bibliographical references. 327 $a""3. Quick proofs (Eulerian method)""""AB. Proof of the whole-space cases""; ""C. The bounded case and the bounded space""; ""4. The long proofs (Tutte-Grothendieck method)""; ""A. Proof of the Euclidean case""; ""B. Proof of the projective case""; ""C. Proof of the bounded case""; ""5. A collocation of corollaries""; ""A. The Euler relations proved""; ""B. More counting relations""; ""C. Enumeration in the classical style""; ""D. Unbounded faces""; ""E. Back to Buck: arrangements made simple""; ""F. Winder's Theorem and threshold functions""; ""6 Points and zonotopes"" 327 $a""A. Placing hyperplanes between points""""B. The faces of zonotopes""; ""PART II. A STUDY OF EUCLIDEAN ARRANGEMENTS WITH PARTICULAR REFERENCE TO BOUNDED FACES""; ""7. The beta theorem. Theorem D""; ""8. The central decomposition. Theorem E""; ""A. Appendix on spanning sets of coatoms""; ""9. The dimension of the bounded space""; ""References""; ""Index of symbols"" 410 0$aMemoirs of the American Mathematical Society ;$vnumber 154. 606 $aCombinatorial geometry 606 $aCombinatorial enumeration problems 606 $aLattice theory 615 0$aCombinatorial geometry. 615 0$aCombinatorial enumeration problems. 615 0$aLattice theory. 676 $a516/.13 700 $aZaslavsky$b Thomas$01542988 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788617003321 996 $aFacing up to arrangements$93796217 997 $aUNINA