LEADER 02822nam 2200625 450 001 9910788613803321 005 20170816143237.0 010 $a0-8218-9920-1 035 $a(CKB)3360000000464036 035 $a(EBL)3113588 035 $a(SSID)ssj0000973470 035 $a(PQKBManifestationID)11591756 035 $a(PQKBTitleCode)TC0000973470 035 $a(PQKBWorkID)10959334 035 $a(PQKB)11342537 035 $a(MiAaPQ)EBC3113588 035 $a(RPAM)774787 035 $a(PPN)195410068 035 $a(EXLCZ)993360000000464036 100 $a20720619d1972 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA general character theory for partially ordered sets and lattices /$fby Karl Heinrich Hofmann and Klaus Keimel 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1972. 215 $a1 online resource (129 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 122 300 $aDescription based upon print version of record. 311 $a0-8218-1822-8 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""1. Adjoint functors between the categories of partially ordered sets and topological spaces""; ""2. The general adjunction theorem""; ""3. Special adjunction theorems for various categories of partially ordered semigroups, semilattices, lattices, partial lattices to the full category of topological spaces""; ""4. Continuous characters and the duality of semiprime lattices and spectral spaces""; ""5. Quasicompactness and quasi-Boolean duality""; ""6. Minimal and regular characters. Compactifications"" 327 $a""7. Maximal and pseudocomplemented characters. Projective covers. O-distributive and weakly complemented lattices""""Bibliographical Notes""; ""Bibliography""; ""List of categories""; ""List of frequently used symbols""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""H""; ""I""; ""J""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""W"" 410 0$aMemoirs of the American Mathematical Society ;$vnumber 122. 606 $aCategories (Mathematics) 606 $aTopological spaces 606 $aLattice theory 606 $aOrdered sets 606 $aPartially ordered sets 615 0$aCategories (Mathematics) 615 0$aTopological spaces. 615 0$aLattice theory. 615 0$aOrdered sets. 615 0$aPartially ordered sets. 676 $a511/.33 700 $aHofmann$b Karl Heinrich$04964 702 $aKeimel$b Klaus 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788613803321 996 $aA general character theory for partially ordered sets and lattices$93796185 997 $aUNINA