LEADER 05690nam 2200709 a 450 001 9910788565903321 005 20230725045546.0 010 $a1-283-14335-6 010 $a9786613143358 010 $a1-84816-419-X 035 $a(CKB)3360000000001153 035 $a(EBL)731115 035 $a(OCoLC)741492800 035 $a(SSID)ssj0000521826 035 $a(PQKBManifestationID)12251531 035 $a(PQKBTitleCode)TC0000521826 035 $a(PQKBWorkID)10523303 035 $a(PQKB)11390954 035 $a(MiAaPQ)EBC731115 035 $a(WSP)0000P652 035 $a(Au-PeEL)EBL731115 035 $a(CaPaEBR)ebr10479785 035 $a(CaONFJC)MIL314335 035 $a(EXLCZ)993360000000001153 100 $a20110222d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCrystalline materials for actinide immobilisation$b[electronic resource] /$fBoris E. Burakov, Michael I. Ojovan, William (Bill) E. Lee 210 $aLondon $cImperial College Press ;$aHackensack, N.J. $cDistributed by World Scientific Pub. Co.$dc2011 215 $a1 online resource (216 p.) 225 1 $aMaterials for engineering ;$vv. 1 300 $aDescription based upon print version of record. 311 $a1-84816-418-1 320 $aIncludes bibliographical references and index. 327 $aPreface; Abbreviations; Acknowledgements; Contents; Chapter 1 Introduction to the Actinides; 1.1. Actinide Series; 1.1.1. History; 1.1.2. Basic physical and chemical properties; 1.1.3. History of using actinide-containing materials; 1.1.4. High toxicity and long-lived radioactivity; 1.1.5. Need for actinide immobilisation; 1.2. Natural Actinides and Minerals; 1.2.1. Uraninite, pitchblende and thorianite; 1.2.2. Coffinite and thorite; 1.2.3. Brannerite; 1.2.4. Miscellaneous; 1.3. Artificial Actinides; 1.3.1. Actinide production in the nuclear fuel cycle; 1.3.2. Weapons-grade plutonium 327 $a1.3.3. Minor actinides1.3.3.1. Neptunium-237; 1.3.3.2. Americium; 1.3.3.3. Curium; 1.3.3.4. Berkelium and Californium; 1.4. Actinide Host-Phases; 1.4.1. Natural accessory minerals; 1.4.2. Zircon and hafnon; 1.4.3. Monazite; 1.4.4. Zirconolite; 1.4.5. Baddeleyite (monoclinic zirconia); 1.4.6. Tazheranite (cubic zirconia); 1.4.7. Xenotime; 1.4.8. Apatite; 1.4.9. Pyrochlore; 1.4.10. Perovskite; 1.4.11. Garnet; 1.4.12. Murataite; 1.4.13. Kosnarite; 1.4.14. Natural gels; References; Chapter 2 Current and Potential Actinide Applications; 2.1. Advanced Nuclear Fuel Cycle; 2.1.1. MOX nuclear fuel 327 $a2.1.2. Ceramic nuclear fuel2.1.3. Advanced nuclear reactors; 2.2. Inert Pu Ceramic Fuel; 2.3. Sealed Radioactive Sources; 2.4. Self-glowing Materials; 2.5. Transmutation Targets; 2.6. Summary; References; Chapter 3 Waste Actinide Immobilisation; 3.1. Ceramic Nuclear Wasteforms: Historical Overview; 3.1.1. Early work; 3.1.2. Emergence of Pu wasteforms; 3.1.3. Emergence of durability studies; 3.2. Titanate-based Ceramics; 3.2.1. Synroc; 3.2.2. Ti-pyrochlore; 3.3. Phosphate-based Ceramics; 3.3.1. Monazite; 3.3.2. Th-phosphate/diphosphate (TPD); 3.3.3. Kosnarite and NZP; 3.3.4. Apatite 327 $a3.4. Ceramics Based on Zirconium and Hafnium Minerals3.4.1. Zircon/zirconia and hafnon/hafnia; 3.4.2. Cubic zirconia (tazheranite) and hafnia; 3.5. Garnet/Perovskite; 3.6. Summary; References; Chapter 4 Synthesis Methods; 4.1. Precursor Fabrication; 4.1.1. Sol-gel; 4.1.2. Co-precipitation; 4.1.3. Oxide powder mix; 4.2. Hot Uniaxial Pressing (HUP); 4.3. Hot Isostatic Pressing (HIP); 4.4. Pressing-sintering; 4.5. Melting-crystallisation; 4.6. Self-sustaining (Self-propagating) High Temperature Reactions; 4.7. Single Crystal Growth; 4.8. Summary; References 327 $aChapter 5 Examination of Highly Radioactive Samples5.1. XRD Analysis; 5.2. SEM and EPMA; 5.3. Cathodoluminescence; 5.4. Optical Microscopy; 5.5. Mechanical Durability; 5.6. Leach and Alteration Tests; References; Chapter 6 Radiation Damage; 6.1. Ion-irradiation; 6.2. Doping with 238Pu and 244Cm; 6.2.1. Zircon/zirconia and hafnon/hafnia ceramics; 6.2.2. Zircon single crystal; 6.2.3. Cubic zirconia ceramic; 6.2.4. Monazite ceramic; 6.2.5. Monazite single crystal; 6.2.6. Ti-pyrochlore ceramic; 6.2.7. Zr-pyrochlore ceramic; 6.2.8. Zirconolite ceramic; 6.2.9. Garnet ceramic 327 $a6.2.10. Silicate-apatite ceramic and chlorine-apatite powder 330 $aThis book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials e.g. ceramics and monocrystals. Durable actinide-containing materials including crystalline ceramics and single crystals are attractive for various applications such as nuclear fuel to burn excess Pu, chemically inert sources of; irradiation for use in unmanned space vehicles or producing electricity for microelectronic devices, and nuclear waste disposal. Long-lived emitting actinides such as Pu, Np, Am and Cm are currently of serious concern has a result of increase 410 0$aSeries on materials for engineering ;$vv. 1. 606 $aActinide elements 606 $aAlpha-bearing wastes 606 $aCeramic materials 615 0$aActinide elements. 615 0$aAlpha-bearing wastes. 615 0$aCeramic materials. 676 $a620.1404228 700 $aBurakov$b Boris E$01464340 701 $aOjovan$b Michael I$0627277 701 $aLee$b W. E$01464341 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788565903321 996 $aCrystalline materials for actinide immobilisation$93673952 997 $aUNINA