LEADER 01257nam--2200349---4500 001 990003199160203316 005 20090223110101.0 010 $a92-79-03455-3 035 $a000319916 035 $aUSA01000319916 035 $a(ALEPH)000319916USA01 035 $a000319916 100 $a20090223a20079999km-y0ITAy0103----ba 101 $aeng 102 $aLU 105 $ay---z---001yy 200 1 $aFlying together$eEU air transport policy$fEuropean commission, Directorate-General for energy and transport 210 $aLuxembourg$cOffice for official publications of the European Communities$d2007 215 $a12 p.$cill.$d30 cm 606 0 $aTrasporti aerei$xConcorrenza$yPaesi della Comunità europea$2BNCF 676 $a387.7 699 $a10.05$bTrasporti aerei 710 02$aCOMMISSIONE EUROPEA :$bDirezione generale Energia e trasporti$0597599 801 0$aIT$bsalbc$gISBD 856 4 $uhttp://ec.europa.eu/transport/air_portal/international/doc/brochures/airtransport%20_en_071030.pdf$4.$zAccesso online 912 $a990003199160203316 951 $aCDE 10.05 (IX)$bCDE 1830$cCDE 10.05$d00149454 959 $aBK 969 $aCDE 979 $aMARIAS$b90$c20090223$lUSA01$h1101 996 $aFlying together$91015206 997 $aUNISA LEADER 03333nam 2200697 450 001 9910788561803321 005 20210826033411.0 010 $a3-11-038147-8 024 7 $a10.1515/9783110279641 035 $a(CKB)3280000000038957 035 $a(EBL)1130346 035 $a(OCoLC)890070954 035 $a(SSID)ssj0001333244 035 $a(PQKBManifestationID)12539109 035 $a(PQKBTitleCode)TC0001333244 035 $a(PQKBWorkID)11377874 035 $a(PQKB)10178747 035 $a(MiAaPQ)EBC1130346 035 $a(DE-B1597)175427 035 $a(OCoLC)906039389 035 $a(DE-B1597)9783110279641 035 $a(Au-PeEL)EBL1130346 035 $a(CaPaEBR)ebr11006658 035 $a(CaONFJC)MIL805035 035 $a(PPN)187992126 035 $a(EXLCZ)993280000000038957 100 $a20140506h20142014 uy| 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aKrichever-Novikov type algebras $etheory and applications /$fMartin Schlichenmaier 210 1$aBerlin ;$aBoston :$cDe Gruyter,$d[2014] 210 4$d©2014 215 $a1 online resource (378 p.) 225 1 $aDe Gruyter studies in mathematics ;$vvolume 53 300 $aDescription based upon print version of record. 311 0 $a3-11-026517-6 311 0 $a3-11-027964-9 320 $aIncludes bibliographical references (pages 345-356). 327 $tFront matter --$tPreface --$tContents --$t1. Some background on Lie algebras --$t2. The higher genus algebras --$t3. The almost-grading --$t4. Fixing the basis elements --$t5. Explicit expressions for a system of generators --$t6. Central extensions of Krichever-Novikov type algebras --$t7. Semi-infinite wedge forms and fermionic Fock space representations --$t8. b ? c systems --$t9. Affine algebras --$t10. The Sugawara construction --$t11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection --$t12. Degenerations and deformations --$t13. Lax operator algebras --$t14. Some related developments --$tBibliography --$tIndex 330 $aKrichever and Novikov introduced certain classes of infinite dimensional Lie algebras to extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them to a more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric 410 0$aDe Gruyter studies in mathematics ;$vvolume 53. 606 $aInfinite dimensional Lie algebras 610 $aConformal field theory. 610 $aLie algebras. 610 $aMathematical physics. 610 $aModuli spaces. 610 $aRiemann surfaces. 615 0$aInfinite dimensional Lie algebras. 676 $a512/.482 686 $aSK 340$qSEPA$2rvk 700 $aSchlichenmaier$b Martin$f1952-$051684 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788561803321 996 $aKrichever-Novikov type algebras$93673914 997 $aUNINA