LEADER 05230nam 2200613 450 001 9910788032603321 005 20200520144314.0 010 $a0-323-37522-7 035 $a(CKB)2670000000596460 035 $a(EBL)1962522 035 $a(SSID)ssj0001560422 035 $a(PQKBManifestationID)16193363 035 $a(PQKBTitleCode)TC0001560422 035 $a(PQKBWorkID)14825197 035 $a(PQKB)10889539 035 $a(Au-PeEL)EBL1962522 035 $a(CaPaEBR)ebr11021977 035 $a(CaONFJC)MIL729868 035 $a(OCoLC)903531522 035 $a(MiAaPQ)EBC1962522 035 $a(EXLCZ)992670000000596460 100 $a20150227h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplications of graphene and graphene-oxide based nanomaterials /$fSekhar Chandra Ray 210 1$aWaltham, [Massachusetts] :$cWilliam Andrew,$d2015. 210 4$dİ2015 215 $a1 online resource (93 p.) 225 0 $aMicro and Nano Technologies Series 300 $aDescription based upon print version of record. 311 $a1-322-98586-3 311 $a0-323-37521-9 320 $aIncludes bibliographical references. 327 $aFront Cover; Applications of Graphene and Graphene-Oxide Based Nanomaterials; Copyright Page; Contents; Acknowledgments; 1 Application and Uses of Graphene; 1.1 Introduction; 1.2 Preparation/Synthesis of Graphene; 1.3 Properties of Graphene; 1.4 Potential Application and Uses of Graphene; 1.4.1 Graphene in Hydrogen Storage Devices; 1.4.2 Graphene as a Battery; 1.4.3 Application of Graphene Thin Film as Transparent Conductor (Electrodes); 1.4.3.1 Graphene as Transparent Conducting Electrodes; 1.4.3.2 Flexible Electronics; 1.4.3.3 Touch Screen; 1.4.4 Solar Cells and OVPs 327 $a1.4.4.1 Organic Photovoltaic Cells1.4.5 Fuel Cells; 1.4.6 Microbial Biofuel Cells; 1.4.7 Enzymatic Biofuel Cells; 1.4.8 Organic Light-Emitting Diodes; 1.4.9 Graphene as a Super-Capacitor/Ultra-Capacitors; 1.4.10 Spintronics; 1.4.10.1 Many Challenges and Opportunities Await for Spin and Magnetism in Graphene; 1.4.11 Integrated Circuits; 1.4.12 Transistors; 1.4.13 Ballistic Transistors; 1.4.14 Radio Frequency Applications; 1.4.14.1 Nano Antennas; 1.4.15 Sound Transducer; 1.4.16 Graphene as Sensor; 1.4.16.1 Electrochemical Sensor; 1.4.16.2 Gas Sensors; 1.4.16.3 Biosensors 327 $a1.4.17 Composite Materials1.4.18 Liquid Crystal Displays; 1.4.19 Graphene Quantum Dots; 1.4.20 Frequency Multiplier; 1.4.21 Optical Modulator; 1.4.22 Infrared Light Detection; 1.4.23 Graphene Photodetectors; 1.4.24 Piezoelectricity; 1.4.25 Graphene as Purification of Water; 1.5 Conclusion and Perspectives of Graphene; 1.6 The Present Challenges and Future Research in Graphene Nanomaterials; References; 2 Application and Uses of Graphene Oxide and Reduced Graphene Oxide; 2.1 Introduction; 2.2 Preparation/Synthesis of GO/rGO; 2.3 Surface Functionalization of GO and rGO 327 $a2.4 Properties of GO and rGO2.5 Applications of GO and rGO; 2.5.1 GO/rGO in Electronics Devices; 2.5.2 GO/rGO as Energy Storage Device; 2.5.3 GO/rGO as Biosensors; 2.5.4 GO/rGO as Biomedical Applications; 2.5.5 GO as Water Purification (Filter); 2.5.6 GO/rGO as Coating Technology; 2.5.7 GO/rGO Composites and Paper-Like Materials; 2.6 Conclusion and Perspectives of GO/rGO; 2.7 The Present Challenges and Future Research in GO/rGO Nanomaterial; References; 3 Graphene-Based Carbon Nanoparticles for Bioimaging Applications; 3.1 Introduction; 3.2 Preparation Process of Carbon Nanoparticles 327 $a3.2.1 Synthesis of CP from Oxidation of Burning Candle Soot3.2.2 Synthesis of Carbon Nanoparticle from Carbohydrate Carbonization Method; 3.2.3 Functionalization of FCN; 3.3 Properties of Carbon Nanoparticles; 3.3.1 Physical and Structural Properties; 3.3.2 Chemical and Bonding Properties; 3.3.3 Optical-Luminescence Properties; 3.4 Application of Carbon Nanoparticles in Bioimaging Process; 3.5 Cytotoxicity of FCN; 3.6 Discussion; 3.7 Conclusion and Perspectives of Carbon Nanoparticles; 3.8 Present Challenges and Future Research in Carbon Nanoparticles; References 330 $aCarbon nanomaterials have a unique place in Nanoscience owing to their exceptional electrical, thermal, chemical and mechanical properties and have found application in areas as diverse as composite materials, energy storage and conversion, sensors, drug delivery, field emission devices and nano-scale electronic components. Conjugated carbon nanomaterial covers the areas of carbon nanotubes, fullerenes and graphene. Graphene is the newest of the carbon nanomaterials and promises to be a very active field. Already since its isolation in 2004 it has grabbed the attention of the chemistry, materi 410 0$aMicro and Nano Technologies 606 $aNanostructured materials 615 0$aNanostructured materials. 676 $a546.681 700 $aRay$b Sekhar Chandra$0905297 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788032603321 996 $aApplications of graphene and graphene-oxide based nanomaterials$93765483 997 $aUNINA