LEADER 03574oam 2200709I 450 001 9910788023603321 005 20220623191444.0 010 $a0-429-13660-9 010 $a1-4665-2723-4 024 7 $a10.1201/b18272 035 $a(CKB)2670000000607459 035 $a(EBL)1619960 035 $a(SSID)ssj0001505392 035 $a(PQKBManifestationID)11945179 035 $a(PQKBTitleCode)TC0001505392 035 $a(PQKBWorkID)11489780 035 $a(PQKB)10202175 035 $a(SSID)ssj0001542742 035 $a(PQKBManifestationID)16131576 035 $a(PQKBTitleCode)TC0001542742 035 $a(PQKBWorkID)14791858 035 $a(PQKB)11442084 035 $a(MiAaPQ)EBC1619960 035 $a(OCoLC)906180651 035 $a(CaSebORM)9781584888369 035 $a(PPN)189405880 035 $a(EXLCZ)992670000000607459 100 $a20180331h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aGroup theoretic cryptography /$fMaria Isabel Gonzalez Vasco, Universidad Rey Juan Carlos, Madrid, Spain, Rainer Steinwandt, Florida Atlantic University, Boca Raton, FL 210 1$aBoca Raton, Florida :$cCRC Press,$d[2015] 210 4$dİ2015 215 $a1 online resource (244 p.) 225 1 $aChapman and Hall/CRC Cryptography and Network Security 300 $aA Chapman and Hall book--Title page. 311 $a1-58488-837-7 311 $a1-58488-836-9 320 $aIncludes bibliographical references. 327 $aCover; Dedication; Contents; List of Figures; Symbol Description; Preface; Part I: Preliminaries; Chapter 1: Mathematical background; Chapter 2: Basics on complexity; Chapter 3: Cryptology: An introduction; Part II: Public-Key Encryption; Chapter 4: Provable security guarantees; Chapter 5: Public-key encryption in the standard model; Chapter 6: Public-key encryption using infinite groups; Part III: Secret-Key Encryption; Chapter 7: Block ciphers; Chapter 8: Cryptographic hash functions and message authentication codes; Part IV: Other Cryptographic Constructions 327 $aChapter 9: Key establishment protocolsChapter 10: Signature and identification schemes; Part V: Appendix; Appendix A: Solutions to selected exercises; References 330 $aGroup theoretic problems appear to be the most promising source of hard computational problems for deploying new cryptographic constructions. This reference focuses on the specifics of using nonabelian groups in the field of cryptography. It provides an introduction to cryptography (mostly asymmetric) with a focus on group theoretic constructions, making it the first book to use this approach. The authors include all of the needed cryptographic and group theoretic concepts. They supply exercises at the end of each chapter, selected solutions in the back of the book, and suggestions for student 410 0$aChapman & Hall/CRC cryptography and network security. 606 $aCryptography 606 $aData encryption (Computer science) 606 $aComputer networks$xSecurity measures 615 0$aCryptography. 615 0$aData encryption (Computer science) 615 0$aComputer networks$xSecurity measures. 676 $a005.82 700 $aGonza?lez Vasco$b Maria Isabel$01246436 702 $aSteinwandt$b Rainer 702 $aVasco$b Maria Isabel Gonzalez 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910788023603321 996 $aGroup theoretic cryptography$93823540 997 $aUNINA