LEADER 00852nam0-22003131i-450 001 990001777450403321 005 20190724094751.0 010 $a0-85166-394-0 035 $a000177745 035 $aFED01000177745 035 $a(Aleph)000177745FED01 035 $a000177745 100 $a20021010d1990----km-y0itay50------ba 101 0 $aita 200 1 $aHandbook of breadmaking technology$fCharles A. Stear. 210 $aLondon$cElsevier Applied Science$d1990 215 $aXI, 848 p.$d25 cm 610 0 $aPane 610 0 $aPanificio 676 $a664.752 700 1$aStear,$bCharles A.$077363 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001777450403321 952 $a60 664.752 STEC 1990$b3815$fFAGBC 959 $aFAGBC 996 $aHandbook of breadmaking technology$9408859 997 $aUNINA DB $aING01 LEADER 04164oam 2200589I 450 001 9910787852003321 005 20230725040258.0 010 $a0-429-11151-7 010 $a1-4200-9189-1 024 7 $a10.1201/b15805 035 $a(CKB)2670000000557014 035 $a(EBL)1378833 035 $a(SSID)ssj0001039627 035 $a(PQKBManifestationID)11555314 035 $a(PQKBTitleCode)TC0001039627 035 $a(PQKBWorkID)10990693 035 $a(PQKB)11789299 035 $a(MiAaPQ)EBC1378833 035 $a(Au-PeEL)EBL1378833 035 $a(CaPaEBR)ebr11002787 035 $a(CaONFJC)MIL60404 035 $a(OCoLC)899155232 035 $a(OCoLC)869311230 035 $a(EXLCZ)992670000000557014 100 $a20180331d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aPoultry meat processing /$fedited by Casey M. Owens, Christine Z. Alvarado, Alan R. Sams 205 $aSecond edition. 210 1$aBoca Raton, Fla. :$cCRC Press,$d2010. 215 $a1 online resource (456 p.) 300 $aDescription based upon print version of record. 311 $a1-4398-8216-9 320 $aIncludes bibliographical references and index. 327 $ach. 1. Introduction to poultry meat processing / Alan R. Sams and Christine Z. Alvarado -- ch. 2. Preslaughter factors affecting poultry meat quality / Julie K. Northcutt and R. Jeff Buhr -- ch. 3. First processing : Slaughter through chilling / Alan R. Sams and Shelly R. McKee -- ch. 4. Second processing : parts, deboning, and portion control / Alan R. Sams and Casey M. Owens -- ch. 5. Poultry meat inspection and grading / Sacit F. Bilgili -- ch. 6. Packaging / Paul L. Daw -- ch. 7. Meat quality : sensory and instrumental evaluations / Brenda G. Lyon ... [et al.] -- ch. 8. Microbiological pathogens : live poultry considerations / Billy M. Hargis, David J. Caldwell, and J. Allen Byrd -- ch. 9. Poultry-borne pathogens : plant considerations / Michael A. Davis, Manpreet Singh, and Donald E. Conner -- ch. 10. Spoilage bacteria associated with poultry / Scott M. Russell -- ch. 11. Functional properties of muscle proteins in processed poultry products / Denise M. Smith -- ch. 12. Formed and emulsion products / Jimmy T. Keeton and Wesley N. Osburn -- ch. 13. Coated poultry products / Casey M. Owens -- ch. 14. Mechanical separation of poultry meat and its use in products / Glenn W. Froning and Shelly R. McKee -- ch. 15. Marination, cooking, and curing of poultry products / Douglas P. Smith and James C. Acton -- ch. 16. Quality assurance and process control / Douglas P. Smith -- ch. 17. Nutritive value of poultry meat / Leslie D. Thompson -- ch. 18. Processing water and wastewater / William C. Merka -- ch. 19. Coproducts and by-products from poultry processing / Rube?n O. Morawicki -- ch. 20. Poultry processing under animal welfare and organic standards in the United States / Anne Fanatico -- ch. 21. A brief introduction to some of the practical aspects of the kosher and halal laws for the poultry industry / Joe M. Regenstein and Muhammad Munir Chaudry. 330 $aWhen the first edition of Poultry Meat Processing was published, it provided a complete presentation of the theoretical and practical aspects of poultry meat processing, exploring the complex mix of biology, chemistry, engineering, marketing, and economics involved. Upholding its reputation as the most comprehensive text available, Poultry Meat Processing, Second Edition is thoroughly expanded and updated. Understand the Theoretical and Practical Aspects of Processing Poultry From Farm to ForkNow containing even more illustrations, this completely revised second edition features:Three new chap 606 $aPoultry$xProcessing 615 0$aPoultry$xProcessing. 676 $a664.93 701 $aOwens$b Casey M$0874035 701 $aAlvarado$b Christine$0874028 701 $aSams$b Alan R$01582430 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910787852003321 996 $aPoultry meat processing$93864814 997 $aUNINA LEADER 04885nam 2201189z- 450 001 9910557353503321 005 20220111 035 $a(CKB)5400000000042355 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/77043 035 $a(oapen)doab77043 035 $a(EXLCZ)995400000000042355 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvanced Computational Methods for Oncological Image Analysis 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (262 p.) 311 08$a3-0365-2554-8 311 08$a3-0365-2555-6 330 $a[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians' unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations-such as segmentation, co-registration, classification, and dimensionality reduction-and multi-omics data integration.] 606 $aMedicine and Nursing$2bicssc 610 $a3D-CNN 610 $abone scintigraphy 610 $abrain MRI image 610 $abrain tumor 610 $abrain tumor segmentation 610 $aBRATS dataset 610 $abreast cancer 610 $abreast cancer detection 610 $abreast cancer diagnosis 610 $abreast imaging 610 $abreast mass 610 $aclassification 610 $aclutter rejection 610 $acomputer-aided detection 610 $acontrast source inversion 610 $adataset partition 610 $adeep learning 610 $adimensionality reduction 610 $aensemble classification 610 $aensemble method 610 $afalse positives reduction 610 $afeature selection 610 $aimage reconstruction 610 $aimaging biomarkers 610 $aimmunotherapy 610 $aincoherent imaging 610 $ainterferometric optical fibers 610 $ak-means clustering 610 $aKolmogorov-Smirnov hypothesis test 610 $amachine learning 610 $amagnetic resonance imaging 610 $amammography 610 $aMask R-CNN 610 $amass detection 610 $amass segmentation 610 $amedical imaging 610 $amelanoma detection 610 $amicrowave imaging 610 $aMRgFUS 610 $an/a 610 $aperformance metrics 610 $aprincipal component analysis 610 $aprostate cancer 610 $aproton resonance frequency shift 610 $aradiomics 610 $aRBF neural networks 610 $areferenceless thermometry 610 $aregion growing 610 $arisk assessment 610 $asegmentation 610 $aself-attention 610 $asemisupervised classification 610 $ashallow machine learning 610 $askull stripping 610 $astatistical inference 610 $asurvey 610 $atemperature variations 610 $atexture 610 $atransfer learning 610 $atumor region 610 $aU-Net 610 $aunsupervised machine learning 610 $aWisconsin Breast Cancer Dataset 615 7$aMedicine and Nursing 700 $aRundo$b Leonardo$4edt$01290017 702 $aMilitello$b Carmelo$4edt 702 $aConti$b Vincenzo$4edt 702 $aZaccagna$b Fulvio$4edt 702 $aHan$b Changhee$4edt 702 $aRundo$b Leonardo$4oth 702 $aMilitello$b Carmelo$4oth 702 $aConti$b Vincenzo$4oth 702 $aZaccagna$b Fulvio$4oth 702 $aHan$b Changhee$4oth 906 $aBOOK 912 $a9910557353503321 996 $aAdvanced Computational Methods for Oncological Image Analysis$93021302 997 $aUNINA