LEADER 04941nam 22006372 450 001 9910787691103321 005 20151005020621.0 010 $a1-139-89066-2 010 $a1-107-50194-6 010 $a1-107-50069-9 010 $a1-107-50618-2 010 $a1-107-51648-X 010 $a1-107-49635-7 010 $a1-107-50353-1 010 $a1-139-05840-1 035 $a(CKB)2670000000415486 035 $a(EBL)1543610 035 $a(OCoLC)862614703 035 $a(SSID)ssj0000985413 035 $a(PQKBManifestationID)12440544 035 $a(PQKBTitleCode)TC0000985413 035 $a(PQKBWorkID)10929929 035 $a(PQKB)10999518 035 $a(UkCbUP)CR9781139058407 035 $a(MiAaPQ)EBC1543610 035 $a(Au-PeEL)EBL1543610 035 $a(CaPaEBR)ebr10795343 035 $a(PPN)261276255 035 $a(EXLCZ)992670000000415486 100 $a20110316d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBuoyancy effects on natural ventilation /$fTorwong Chenvidyakarn, former fellow and director of studies in architecture, University of Cambridge, and senior tutor, Architectural Innovation and Management Programme, Shinawatra International University$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xv, 260 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-01530-8 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: 1. Introduction -- 1.1. The modelling quest -- 1.2. Water-bath modelling -- 1.3. The theoretical basis -- 1.4. Applicability of water-bath modelling -- 1.5. The cases examined -- 2. Some preliminaries -- 2.1. Various conservation laws -- 2.1.1. Conservation of mass -- 2.1.2. Conservation of thermal energy -- 2.1.3. Conservation of buoyancy flux -- 2.2. Equilibrium and neutral level -- 2.3. Bernoulli's theorem -- 2.4. Effective opening area -- 2.5. Application of the basic principles -- 3. Sources of identical sign -- 3.1. Residual buoyancy -- 3.1.1. Mixing ventilation -- 3.1.2. Displacement ventilation -- 3.2. The localised source -- 3.2.1. Plume theory -- 3.2.2. Sealed enclosure -- 3.2.3. Ventilated enclosure -- 3.2.4. Transient responses -- 3.2.5. Multiple localised sources -- 3.3. The distributed source -- 3.3.1. Steady-state flow regime -- 3.3.2. Evolution to steady state -- 3.4.A combination of the localised source and the distributed source. 327 $aContents note continued: 4. Sources of opposite sign -- 4.1. Flushing with pre-cooled air -- 4.2. Pre-cooled ventilation of occupied spaces -- 4.2.1. Cooling to above ambient air temperature -- 4.2.2. Cooling to below ambient air temperature -- 4.3. Maintained source of heat and internal cooling -- 4.3.1. Distributed source of heat and distributed source of cooling -- 4.3.2. Localised source of heat and distributed source of cooling -- 4.3.3. Localised source of heat and localised source of cooling -- 5. Some common flow complications arising from more complex geometries -- 5.1. Openings at more than two levels -- 5.1.1. Multiple stacks -- 5.1.2. Multiple side openings -- 5.2. Multiple connected spaces -- 5.2.1. Multi-storey buildings -- 5.2.2. Spaces connected sideways. 330 $aThis book describes in depth the fundamental effects of buoyancy, a key force in driving air and transporting heat and pollutants around the interior of a building. This book is essential reading for anyone involved in the design and operation of modern sustainable, energy-efficient buildings, whether a student, researcher or practitioner. The book presents new principles in natural ventilation design and addresses surprising, little-known natural ventilation phenomena that are seldom taught in architecture or engineering schools. Despite its scientific and applied mathematics subject, the book is written in simple language and contains no demanding mathematics, while still covering both qualitative and quantitative aspects of ventilation flow analysis. It is therefore suitable for both non-expert readers who just want to develop intuition of natural ventilation design and control (such as architects and students) and for those possessing more expertise whose work involves quantifying flows (such as engineers and building scientists). 606 $aNatural ventilation 606 $aBuoyant ascent (Hydrodynamics) 615 0$aNatural ventilation. 615 0$aBuoyant ascent (Hydrodynamics) 676 $a697.9/2 700 $aChenvidyakarn$b Torwong$01466376 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910787691103321 996 $aBuoyancy effects on natural ventilation$93676840 997 $aUNINA LEADER 05264nam 2200649Ia 450 001 9910830215703321 005 20230721005820.0 010 $a1-282-68721-2 010 $a9786612687211 010 $a1-118-21168-5 010 $a0-470-61201-0 010 $a0-470-61029-8 035 $a(CKB)2550000000005901 035 $a(EBL)477690 035 $a(OCoLC)609853580 035 $a(SSID)ssj0000354403 035 $a(PQKBManifestationID)11245294 035 $a(PQKBTitleCode)TC0000354403 035 $a(PQKBWorkID)10313168 035 $a(PQKB)11270686 035 $a(MiAaPQ)EBC477690 035 $a(EXLCZ)992550000000005901 100 $a20090407d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLEDs for lighting applications$b[electronic resource] /$fedited by Patrick Mottier 210 $aLondon $cISTE ;$aHoboken, NJ $cWiley$dc2009 215 $a1 online resource (298 p.) 225 1 $aISTE ;$vv.134 300 $aDescription based upon print version of record. 311 $a1-84821-145-7 320 $aIncludes bibliographical references and index. 327 $aLEDs for Lighting Applications; Table of Contents; Foreword; Introduction; Chapter 1. Light-Emitting Diodes: Principles and Challenges; 1.1. History of a revolution in the world of the light sources; 1.2. LEDs and lighting; 1.3. Principle of operation, color, efficiency, lifetime and quality of LEDs; 1.3.1. White light production from LEDS: principles and challenges; 1.3.2. Lifetime; 1.3.3. Quality of LEDs; 1.4. Challenges facing LEDs; 1.5. Bibliography; Chapter 2. Substrates for III-Nitride-based Electroluminescent Diodes; 2.1. Introduction 327 $a2.2. Crystal structure and epitaxial relation with 6H-SiC and Al2O32.3. Defects and constraints due to heteroepitaxy; 2.3.1. Dislocations; 2.3.2. Disorientation of the substrate; 2.3.3. Epitaxial stress; 2.3.4. Thermal stress; 2.4. MOVPE growth of GaN on sapphire; 2.4.1. GaN growth; 2.4.2. Standard 2D epitaxy; 2.4.3. 3D epitaxial growth; 2.4.4. Epitaxial lateral overgrow (ELO 1S); 2.4.5. Anisotropic growth; 2.4.6. Two stage ELO GaN growth (ELO 2S); 2.4.7. GaN growth using pendeo-epitaxy; 2.4.8. Nano epitaxy; 2.5. Bulk nitride substrates 327 $a2.5.1. HNPS (high nitrogen pressure solution method) for the fabrication of crystalline GaN2.5.2. Ammonothermal synthesis of GaN; 2.5.3. Halide vapor phase epitaxy (HVPE) of GaN; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. III-Nitride High-Brightness Light-Emitting Diodes; 3.1. Introduction; 3.2. p-n junction in GaN; 3.3. Active region: InGaN/GaN quantum well; 3.3.1. Growth and structure; 3.3.2. Optical properties; 3.4. Radiative efficiency; 3.5. Conclusion and prospects; 3.6. Bibliography; Chapter 4. Diode Processing; 4.1. Introduction; 4.2. Orders of magnitude; 4.3. Diode configurations 327 $a4.3.1. Conventional chip (CC)4.3.2. Flip chip (FC); 4.3.3. Vertical thin film (VTF); 4.3.4. Thin film flip chip (TFFC); 4.4. Light extraction at wafer level; 4.5. Diode processing, etching, contact deposition; 4.5.1. N-type contacts; 4.5.2. P-type contacts; 4.6. Etching; 4.7. Substrate removal; 4.8. Potential evolutions; 4.9. Bibliography; Chapter 5. Packaging; 5.1. Introduction; 5.2. Different packaging processes; 5.2.1. Historical background; 5.2.2. From the wafer to the chip; 5.2.3. Components with connection pins; 5.2.4. SMT leadform components; 5.2.5. SMT "leadless" components 327 $a5.2.6. Other technologies5.2.7. Conclusion; 5.3. Thermal management; 5.3.1. Motivations; 5.3.2. Heat dissipation modes; 5.3.3. Thermal dissipation in LEDs; 5.3.4. Comparison of different packaging processes; 5.3.5. Conclusion; 5.4. Light extraction in LEDs; 5.4.1. Lateral light extraction in LEDs; 5.4.2. Vertical light extraction through a lens; 5.4.3. Lens/encapsulant materials; 5.4.4. Lenses and encapsulant implementation; 5.5. LED component characteristics; 5.5.1. Thermal and electrical characteristics; 5.5.2. Optical characteristics; 5.5.3. Binning; 5.5.4. Reliability 327 $a5.6. Conclusion and trends 330 $aLight Emitting Diodes (LEDs) are no longer confined to use in commercial signage and have now moved firmly, and with unquestioned advantages, into the field of commercial and domestic lighting. This development was prompted in the late 1980s by the invention of the blue LED, a wavelength that had previously been missing from the available LED spectrum and which opened the way to providing white light. Since that point, LED performance (including energy efficiency) has improved dramatically, and now compares with the performance of fluorescent lights - and there remain further performance impro 410 0$aISTE 606 $aLight emitting diodes 606 $aElectric lighting$xEquipment and supplies 615 0$aLight emitting diodes. 615 0$aElectric lighting$xEquipment and supplies. 676 $a621.3815/22 676 $a621.381522 701 $aMottier$b Patrick$01670748 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830215703321 996 $aLEDs for lighting applications$94032803 997 $aUNINA