LEADER 01491nam 2200505 450 001 9910787291003321 005 20230803035428.0 010 $a80-246-2714-0 035 $a(CKB)3710000000270980 035 $a(EBL)3319744 035 $a(SSID)ssj0001491105 035 $a(PQKBManifestationID)11856481 035 $a(PQKBTitleCode)TC0001491105 035 $a(PQKBWorkID)11488626 035 $a(PQKB)11745210 035 $a(MiAaPQ)EBC1996739 035 $a(Au-PeEL)EBL1996739 035 $a(CaPaEBR)ebr10960964 035 $a(OCoLC)896847680 035 $a(EXLCZ)993710000000270980 100 $a20141110h20132013 uy 0 101 0 $acze 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBohemisticke? miniatury /$fMilan Hrdlic?ka ; redakce, Lenka Se?rbanic?ova? 210 1$a[Prague, Czech Republic] :$cKarolinum,$d2013. 210 4$d©2013 215 $a1 online resource (122 p.) 300 $aDescription based upon print version of record. 311 $a80-246-2176-2 320 $aIncludes bibliographical references and indexes. 606 $aCzech language$xGrammar 615 0$aCzech language$xGrammar. 676 $a491.8682421 700 $aHrdlic?ka$b Milan$01536404 702 $aSe?rbanic?ova?$b Lenka 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910787291003321 996 $aBohemisticke? miniatury$93785149 997 $aUNINA LEADER 11030nam 22004573 450 001 9910865250403321 005 20240606080239.0 010 $a9789819703005$b(electronic bk.) 010 $z9789819702992 035 $a(MiAaPQ)EBC31364743 035 $a(Au-PeEL)EBL31364743 035 $a(CKB)32228081100041 035 $a(EXLCZ)9932228081100041 100 $a20240606d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aArbuscular Mycorrhizal Fungi in Sustainable Agriculture 205 $a1st ed. 210 1$aSingapore :$cSpringer,$d2024. 210 4$d©2024. 215 $a1 online resource (448 pages) 311 08$aPrint version: Parihar, Manoj Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management Singapore : Springer,c2024 9789819702992 327 $aIntro -- Contents -- About the Editors -- Chapter 1: Multifaceted Role of Arbuscular Mycorrhizal Fungi in Crop Growth Promotion: An Overview -- 1.1 Introduction -- 1.2 Arbuscular Mycorrhizal Fungi -- 1.3 Plant Growth and Yield -- 1.4 Mechanism of Plant Growth Improvement -- 1.4.1 Alterations in Root Architecture -- 1.4.2 Improved Water and Nutrient Uptake -- 1.4.3 Increased Photosynthesis -- 1.4.4 Nodulation and Nitrogen Fixation -- 1.4.5 Tolerance to Abiotic and Biotic Factors -- 1.4.5.1 Salinity -- 1.4.5.2 Drought -- 1.4.5.3 Heavy Metals -- 1.4.5.4 Temperature -- 1.4.5.5 Plant Pathogens -- 1.4.6 Interplant Transfer of Nutrients -- 1.4.7 Nutrient-Use Efficiency -- 1.5 Role of AM Fungi in Soil Environment -- 1.5.1 Soil Structure -- 1.5.2 Soil Nutrients -- 1.6 Impact of Agricultural Practices on AM Fungi -- 1.6.1 Organic Manuring -- 1.6.2 Crop Rotation -- 1.6.3 Raising of Cover Crops -- 1.6.4 Minimum Tillage -- 1.6.5 Integrated Pest Management -- 1.7 Factors Affecting AM Fungi Symbiosis -- 1.7.1 Inorganic Fertilization -- 1.7.2 Biocide Application -- 1.7.3 Tillage -- 1.7.4 Cultivation of Non-host Crop and Fallow Period -- 1.8 AM Fungi as Bioinoculum -- 1.9 Conclusion -- References -- Chapter 2: Agronomic Practices for Optimizing the AMF Abundance and Diversity for Sustainable Food Production -- 2.1 Introduction -- 2.2 Conventional Agronomic Practices and Their Influence on Soil Management -- 2.3 Arbuscular Mycorrhizal Fungi and Its Effects on Crops -- 2.3.1 Effect of Arbuscular Mycorrhizal Fungi Inoculation on Maize and Sorghum Crops -- 2.3.2 Effect of Arbuscular Mycorrhizal Fungi Inoculation on Soybean Crops -- 2.4 Stimulating Factors of Arbuscular Mycorrhizal Fungi -- 2.4.1 Plant Root Exudates -- 2.4.1.1 Strigolactones -- 2.4.1.2 Sorgoleone -- 2.5 Interaction Between Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Bacteria. 327 $a2.6 Commercial Inoculants Based on Arbuscular Mycorrhizal Fungi Intended for Soil Management -- 2.7 Conclusion -- References -- Chapter 3: Molecular Determinants and Regulatory Mechanisms of Nutrient Exchange Between Plant and AMF -- 3.1 Introduction -- 3.2 Mycorrhizal Symbiosis -- 3.2.1 Pre-symbiotic Phase -- 3.2.2 Symbiotic Phase -- 3.3 Structures Involved in Host-AMF Symbiosis -- 3.4 Hormonal Regulation of Mycorrhizal Symbiosis -- 3.5 Nutritional Regulation -- 3.5.1 Mechanism of Nitrogen Uptake -- 3.5.2 Mechanism of Phosphorus Uptake -- 3.5.3 Potassium and Sulphur -- 3.5.4 Carbon and Lipids -- 3.6 Conclusions and Future Prospects -- References -- Chapter 4: Co-inoculation of AMF and Other Microbial Biofertilizers for Better Nutrient Acquisition from the Soil System -- 4.1 Introduction -- 4.2 What Is a Biofertilizer? -- 4.3 The Mycorrhizosphere -- 4.4 Interactions Among the Host, Mycorrhizae, and Other Beneficial Microbes -- 4.5 Enhancing the Nutrient Acquisition Through Direct Interaction Between AMF and PGPR -- 4.5.1 Nitrogen -- 4.5.2 Phosphorus -- 4.5.3 Potassium -- 4.5.4 Micronutrients -- 4.6 Involvement of Mycorrhizal-Associated Bacteria in Increasing the Nutrient Status of Plant -- 4.7 Interaction Between Dark Septate Endophytes and AMF in Plant Nutrient Acquisition -- 4.8 Conclusion and Future Perspectives -- References -- Chapter 5: Potentials and Prospects of AMF for Soil Carbon Sequestration and Nutrient Cycling in Rice-Based Cropping System -- 5.1 Introduction -- 5.2 Role of AMF in Crop Growth Regulation and Biofortification -- 5.3 Sustainability of Rice-Based Cropping Systems with Ecosystem Services -- 5.4 AMF and Soil Carbon Sequestration -- 5.5 Role of Glomalin in Improving Soil Aggregation and Carbon Sequestration -- 5.6 Soil Amelioration Potential of AMF Under Problem Soil Conditions. 327 $a5.7 AMF and Nutrient Cycling Under Different Soil Textures -- 5.8 AMF and Plant Stress Tolerance -- 5.9 Way Forward -- References -- Chapter 6: Role of AMF in Organic Matter Decomposition, Carbon Sequestration and Climate Change Mitigation -- 6.1 Introduction -- 6.2 Role of AMF on Carbon Fluctuations Between Plants and Atmosphere -- 6.3 Role of Extraradical Hyphae on Organic Matter Decomposition in Soils -- 6.4 Extraradical Hyphae and C Sequestration in Soil -- 6.5 Role of AM Fungi on Plant C Rhizodeposition in Soil -- 6.6 Extraradical Hyphae, Glomalin Exudate and Soil Aggregate Development -- 6.7 Conclusions -- References -- Chapter 7: Role of Arbuscular Mycorrhizal Fungi in Nitrogen and Phosphorus Cycling Within Terrestrial Ecosystems -- 7.1 Introduction: Setting the Scene -- 7.2 Implication of AM Symbiosis for P and N Cycling in Ecosystems -- 7.3 Efficiency of Mycorrhizal P and N Transfer from Soil to Plants -- 7.4 Arbuscular Mycorrhizal Symbiosis Affecting Other Processes in Soil-Plant P and N Cycling -- 7.5 Important Considerations for Understanding Mycorrhizal Ecology and Potentials -- 7.6 Conclusions -- References -- Chapter 8: The Role of Arbuscular Mycorrhiza Fungi in Zinc and Iron Nutrition of Crops -- 8.1 Introduction -- 8.2 AMF -- 8.2.1 Nutrient Exchange Between AMF and Host Plant -- 8.2.2 AMF and Plant Growth -- 8.3 Zinc Uptake -- 8.3.1 Role of Zinc in Plant Growth -- 8.3.2 Role of AMF in Zinc Nutrition -- 8.4 Iron Uptake -- 8.4.1 Role of Iron in Plant Growth -- 8.4.2 Role of AMF in Iron Uptake -- 8.5 Conclusion -- References -- Chapter 9: The Abiotic Stress Management in Agroecosystems Through AMF Technology -- 9.1 Introduction -- 9.2 AMF and Their Relationship with Abiotic Stress in Agroecosystems -- 9.2.1 Abiotic Stress: Definition, Types, and Effects on Plants -- 9.2.2 Mechanisms of AMF in Mitigating Abiotic Stress. 327 $a9.2.3 Enhancement of Nutrient and Water Uptake -- 9.2.4 Osmotic Regulation and Antioxidant Response -- 9.2.5 Modulation of Gene Expression and Hormonal Response -- 9.2.6 Promotion of Soil Health -- 9.3 Strategies to Increase AMF Occurrence and Colonization -- 9.3.1 Selection of AMF Species and Strains -- 9.3.2 Agricultural Management Practices and AMF -- 9.3.3 Mycorrhizal Helper Bacteria -- 9.4 Challenges and Limitations of AMF Technology -- 9.5 Future Perspectives and Directions for Research -- References -- Chapter 10: Plant-Arbuscular Mycorrhizal Fungi Association Under Drought Stress -- 10.1 Introduction -- 10.2 Effects on AM Symbiosis -- 10.3 Mechanisms of AMF Mediated Drought Tolerance on Plants -- 10.3.1 Morphological -- 10.3.2 Physiological and Biochemical -- 10.3.3 Genetic -- 10.3.4 Indirect Via Soil -- 10.4 Future Directions and Conclusion -- References -- Chapter 11: Arbuscular Mycorrhizal Fungi: An Eco-Friendly Technology for Alleviation of Salinity Stress and Nutrient Acquisition in Sustainable Agriculture -- 11.1 Introduction -- 11.2 Saline Soils and Adverse Effects of Salinity on Plant Growth -- 11.3 Prevalence of Arbuscular Mycorrhizal Fungi -- 11.4 Development of AM Symbiosis: Exchange of Signals Between Fungus and the Plant -- 11.5 Role of AMF in the Mitigation of Abiotic Stresses -- 11.5.1 Alleviation of Salinity Stress by AM Fungi -- 11.5.2 Mitigation of Drought Stress and Heavy Metal Toxicity -- 11.5.3 Protection of Crop Plants from Pathogens and Herbivores by AM Fungi -- 11.5.4 Alleviation of Nutrient Stress by AM Fungi -- 11.6 Inoculation Effects of AM Fungi on Plant Growth and Development -- 11.6.1 Plant Growth Promoting Effects with Inoculation of AM Fungus -- 11.6.2 Coinoculation Effects of Mycorrhizal Fungi with Rhizospheric Microbes -- 11.7 Expression of Specific Genes During AM Fungal Symbiosis -- 11.8 Conclusions. 327 $aReferences -- Chapter 12: Application of AM Fungi in Phytoremediation of Heavy-Metal Contaminated Soil -- 12.1 Introduction -- 12.2 Mechanisms of Mycorrhizal Phytoremediation -- 12.2.1 Cadmium -- 12.2.2 Chromium -- 12.2.3 Arsenic -- 12.2.4 Other Heavy Metals -- 12.3 Application Cases of AM Fungi in Phytoremediation of Heavy-Metal Contaminated Soil -- 12.3.1 Cadmium -- 12.3.2 Chromium -- 12.3.3 Arsenic -- 12.3.4 Other Heavy Metals -- 12.3.4.1 Lead -- 12.3.4.2 Nickel -- 12.3.4.3 Combined Pollution -- 12.4 Combined Application of AM Fungi with Other Techniques in Phytoremediation of Heavy-Metal Contaminated Soil -- 12.4.1 With Soil Microbes -- 12.4.2 With Soil Animals -- 12.4.3 With Amendments -- 12.4.4 With Chemical Materials -- 12.5 Summary -- References -- Chapter 13: The Role of AM Fungi in the Alleviation of Cadmium Stress in Crops -- 13.1 Introduction -- 13.2 Mechanisms of Cd Stress in Crops -- 13.2.1 Sources and Pathways of Cd Contamination in Soils -- 13.2.2 Uptake and Translocation of Cd in Crops -- 13.2.3 Toxic Effects of Cd on Plant Growth and Development -- 13.3 Role of AM Fungi in Cd Stress Alleviation -- 13.3.1 Overview of AM Fungal Colonization and Cd Uptake in Plants -- 13.3.2 Physiological and Biochemical Mechanisms Underlying the Role of AM Fungi in Cd Stress Alleviation -- 13.3.3 Effects of AM Fungi on Cd Uptake, Translocation, and Accumulation in Crops -- 13.3.4 The Role of AM Fungi in Enhancing Plant Tolerance to Cd Stress -- 13.4 Interactions Between AM Fungi and Other Cd Stress-Alleviating Agents -- 13.4.1 Synergistic Effects of AM Fungi with Other Soil Amendments -- 13.4.2 The Role of AM Fungi in Improving the Effectiveness of Phytochelators and Chelating Agents in Cd Detoxification -- 13.5 Applications of AM Fungi in Cd-Contaminated Soils -- 13.5.1 Potential of AM Fungi in Improving Cd Stress Tolerance in Major Crop Plants. 327 $a13.5.2 Prospects of AM Fungi Applications in Bioremediation of Cd-Contaminated Soils. 700 $aParihar$b Manoj$01737591 701 $aRakshit$b Amitava$01450863 701 $aAdholeya$b Alok$01737592 701 $aChen$b Yinglong$01737593 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910865250403321 996 $aArbuscular Mycorrhizal Fungi in Sustainable Agriculture$94159580 997 $aUNINA