LEADER 05272nam 2201309 450 001 9910786748103321 005 20230421031020.0 010 $a0-691-02133-3 010 $a1-4008-6515-8 024 7 $a10.1515/9781400865154 035 $a(CKB)3710000000222319 035 $a(EBL)1756193 035 $a(OCoLC)888743940 035 $a(SSID)ssj0001332954 035 $a(PQKBManifestationID)12539094 035 $a(PQKBTitleCode)TC0001332954 035 $a(PQKBWorkID)11396104 035 $a(PQKB)10042620 035 $a(MiAaPQ)EBC1756193 035 $a(DE-B1597)447742 035 $a(OCoLC)887802708 035 $a(OCoLC)979780764 035 $a(DE-B1597)9781400865154 035 $a(Au-PeEL)EBL1756193 035 $a(CaPaEBR)ebr10909209 035 $a(CaONFJC)MIL637571 035 $a(OCoLC)891398210 035 $a(EXLCZ)993710000000222319 100 $a20140830h19961996 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aGlobal surgery formula for the Casson-Walker invariant /$fby Christine Lescop 210 1$aPrinceton, New Jersey :$cPrinceton University Press,$d1996. 210 4$dİ1996 215 $a1 online resource (156 p.) 225 1 $aAnnals of Mathematics Studies ;$vNumber 10 300 $aDescription based upon print version of record. 311 0 $a1-322-06320-6 311 0 $a0-691-02132-5 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tTable of contents --$tChapter 1. Introduction and statements of the results --$tChapter 2. The Alexander series of a link in a rational homology sphere and some of its properties --$tChapter 3. Invariance of the surgery formula under a twist homeomorphism --$tChapter 4. The formula for surgeries starting from rational homology spheres --$tChapter 5. The invariant A. for 3-manifolds with nonzero rank --$tChapter 6. Applications and variants of the surgery formula --$tAppendix. More about the Alexander series --$tBibliography --$tIndex 330 $aThis book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases. As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant. 410 0$aAnnals of mathematics studies ;$vNumber 10. 606 $aSurgery (Topology) 606 $aThree-manifolds (Topology) 610 $a3-manifold. 610 $aAddition. 610 $aAlexander polynomial. 610 $aAmbient isotopy. 610 $aBetti number. 610 $aCasson invariant. 610 $aChange of basis. 610 $aChange of variables. 610 $aCobordism. 610 $aCoefficient. 610 $aCombination. 610 $aCombinatorics. 610 $aComputation. 610 $aConjugacy class. 610 $aConnected component (graph theory). 610 $aConnected space. 610 $aConnected sum. 610 $aCup product. 610 $aDeterminant. 610 $aDiagram (category theory). 610 $aDisk (mathematics). 610 $aEmpty set. 610 $aExterior (topology). 610 $aFiber bundle. 610 $aFibration. 610 $aFunction (mathematics). 610 $aFundamental group. 610 $aHomeomorphism. 610 $aHomology (mathematics). 610 $aHomology sphere. 610 $aHomotopy sphere. 610 $aIndeterminate (variable). 610 $aInteger. 610 $aKlein bottle. 610 $aKnot theory. 610 $aManifold. 610 $aMorphism. 610 $aNotation. 610 $aOrientability. 610 $aPermutation. 610 $aPolynomial. 610 $aPrime number. 610 $aProjective plane. 610 $aScientific notation. 610 $aSeifert surface. 610 $aSequence. 610 $aSummation. 610 $aSymmetrization. 610 $aTaylor series. 610 $aTheorem. 610 $aTopology. 610 $aTubular neighborhood. 610 $aUnlink. 615 0$aSurgery (Topology) 615 0$aThree-manifolds (Topology) 676 $a514/.72 700 $aLescop$b Christine$f1966-$061272 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910786748103321 996 $aGlobal surgery formula for the Casson-Walker invariant$9375767 997 $aUNINA