LEADER 03391nam 2200541 450 001 9910786629203321 005 20230120014732.0 010 $a1-4832-6518-8 035 $a(CKB)3710000000200732 035 $a(EBL)1901600 035 $a(SSID)ssj0001432266 035 $a(PQKBManifestationID)11850314 035 $a(PQKBTitleCode)TC0001432266 035 $a(PQKBWorkID)11405184 035 $a(PQKB)10217268 035 $a(MiAaPQ)EBC1901600 035 $a(MiAaPQ)EBC5093682 035 $a(EXLCZ)993710000000200732 100 $a20190403d1988 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAlgebraic geometry and commutative algebra in honor of Masayoshi Nagata$hVolume I /$fedited by Hiroaki Hijikata [and six others] 210 1$aTokyo :$cAcademic Press,$d[1988] 210 4$dİ1988 215 $a1 online resource (417 p.) 300 $aDescription based upon print version of record. 311 $a1-322-55915-5 311 $a0-12-348031-0 320 $aIncludes bibliographical references at the end of each chapters. 327 $aFront Cover; Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA; Copyright Page; Foreword; Table of Contents of Volume II; Determinantal Loci and Enumerative Combinatorics of Young Tableaux; 1. Introduction; First Chapter. YOUNG TABLEAUX AND DETERMINANTAL POLYNOMIALS IN BINOMIAL COEFFICIENTS; 2. Tableaux and monomials; 3. Determinantal polynomials of any width; 4. Determinantal polynomials of width two; Second Chapter.ENUMERATION OF YOUNG TABLEAUX; 5. Counting tableaux of any width; 6. Bitableaux; 7. Counting bitableaux; 8. Counting monomials; 9. Bitableaux and monomials 327 $aThird Chapter.UNIVERSAL DETERMINANTAL IDENTITY10. Preamble; 11. The mixed size case; 12. The cardinality condition; 13. The maximal size case; 14. The basic case; 15. Laplace development; 16. The full depth case; 17. Deduction of the full depth case; 18. The straightening law; 19. Problem; Fourth Chapter.APPLICATIONS TO IDEAL THEORY; 20. Determinantal loci; 21. Vector spaces and homogeneous rings; 22. Standard basis; 23. Second fundamental theorem of invariant theory; 24. Generalized second fundamental theorem of invariant theory; References 327 $a6. Moduli7. Explanations; References; On Rings of Invariants of Finite Linear Groups; 1. Fundamental groups; 2. Proof of Theorem A; 3. Additional results; References; Invariant Differentials; 1. Introduction; 2. Use of the e?tale slice theorem; 3. The n?nite group case; References; Classification of Polarized Manifoldsof Sectional Genus Two; Introduction; Notation, Convention and Terminology; 1. Classification, first step; 2. The case K ~ (3 - n)L; 3. The case of a hyperquadric fi?bration over a curve; 4. Polarized surfaces of sectional genus two; Appendix; References 327 $a12. Proof of Theorem 1 330 $aAlgebraic Geometry and Commutative Algebra 606 $aGeometry, Algebraic$xData processing 615 0$aGeometry, Algebraic$xData processing. 676 $a516.35 702 $aHijikata$b Hiroaki 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910786629203321 996 $aAlgebraic geometry and commutative algebra in honor of Masayoshi Nagata$93818160 997 $aUNINA