LEADER 06561nam 2201873 450 001 9910786510603321 005 20230421030935.0 010 $a0-691-01154-0 010 $a1-4008-6517-4 024 7 $a10.1515/9781400865178 035 $a(CKB)3710000000221860 035 $a(EBL)1756195 035 $a(OCoLC)887499131 035 $a(SSID)ssj0001333688 035 $a(PQKBManifestationID)12603705 035 $a(PQKBTitleCode)TC0001333688 035 $a(PQKBWorkID)11386478 035 $a(PQKB)10937721 035 $a(MiAaPQ)EBC1756195 035 $a(DE-B1597)447829 035 $a(OCoLC)922696501 035 $a(OCoLC)990458499 035 $a(DE-B1597)9781400865178 035 $a(Au-PeEL)EBL1756195 035 $a(CaPaEBR)ebr10907689 035 $a(CaONFJC)MIL636771 035 $a(OCoLC)891400016 035 $a(EXLCZ)993710000000221860 100 $a20140822h19961996 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aRenormalization and 3-manifolds which fiber over the circle /$fby Curtis T. McMullen 210 1$aPrinceton, New Jersey :$cPrinceton University Press,$d1996. 210 4$d©1996 215 $a1 online resource (264 p.) 225 1 $aAnnals of Mathematics Studies ;$vNumber 142 300 $aDescription based upon print version of record. 311 0 $a1-322-05520-3 311 0 $a0-691-01153-2 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$t1 Introduction --$t2 Rigidity of hyperbolic manifolds --$t3 Three-manifolds which fiber over the circle --$t4 Quadratic maps and renormalization --$t5 Towers --$t6 Rigidity of towers --$t7 Fixed points of renormalization --$t8 Asymptotic structure in the Julia set --$t9 Geometric limits in dynamics --$t10 Conclusion --$tAppendix A. Quasiconformal maps and flows --$tAppendix B Visual extension --$tBibliography --$tIndex 330 $aMany parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization. 410 0$aAnnals of mathematics studies ;$vNumber 142. 606 $aThree-manifolds (Topology) 606 $aDifferentiable dynamical systems 610 $aAlgebraic topology. 610 $aAnalytic continuation. 610 $aAutomorphism. 610 $aBeltrami equation. 610 $aBifurcation theory. 610 $aBoundary (topology). 610 $aCantor set. 610 $aCircular symmetry. 610 $aCombinatorics. 610 $aCompact space. 610 $aComplex conjugate. 610 $aComplex manifold. 610 $aComplex number. 610 $aComplex plane. 610 $aConformal geometry. 610 $aConformal map. 610 $aConjugacy class. 610 $aConvex hull. 610 $aCovering space. 610 $aDeformation theory. 610 $aDegeneracy (mathematics). 610 $aDimension (vector space). 610 $aDisk (mathematics). 610 $aDynamical system. 610 $aEigenvalues and eigenvectors. 610 $aFactorization. 610 $aFiber bundle. 610 $aFuchsian group. 610 $aFundamental domain. 610 $aFundamental group. 610 $aFundamental solution. 610 $aG-module. 610 $aGeodesic. 610 $aGeometry. 610 $aHarmonic analysis. 610 $aHausdorff dimension. 610 $aHomeomorphism. 610 $aHomotopy. 610 $aHyperbolic 3-manifold. 610 $aHyperbolic geometry. 610 $aHyperbolic manifold. 610 $aHyperbolic space. 610 $aHypersurface. 610 $aInfimum and supremum. 610 $aInjective function. 610 $aIntersection (set theory). 610 $aInvariant subspace. 610 $aIsometry. 610 $aJulia set. 610 $aKleinian group. 610 $aLaplace's equation. 610 $aLebesgue measure. 610 $aLie algebra. 610 $aLimit point. 610 $aLimit set. 610 $aLinear map. 610 $aMandelbrot set. 610 $aManifold. 610 $aMapping class group. 610 $aMeasure (mathematics). 610 $aModuli (physics). 610 $aModuli space. 610 $aModulus of continuity. 610 $aMöbius transformation. 610 $aN-sphere. 610 $aNewton's method. 610 $aPermutation. 610 $aPoint at infinity. 610 $aPolynomial. 610 $aQuadratic function. 610 $aQuasi-isometry. 610 $aQuasiconformal mapping. 610 $aQuasisymmetric function. 610 $aQuotient space (topology). 610 $aRadon?Nikodym theorem. 610 $aRenormalization. 610 $aRepresentation of a Lie group. 610 $aRepresentation theory. 610 $aRiemann sphere. 610 $aRiemann surface. 610 $aRiemannian manifold. 610 $aSchwarz lemma. 610 $aSimply connected space. 610 $aSpecial case. 610 $aSubmanifold. 610 $aSubsequence. 610 $aSupport (mathematics). 610 $aTangent space. 610 $aTeichmüller space. 610 $aTheorem. 610 $aTopology of uniform convergence. 610 $aTopology. 610 $aTrace (linear algebra). 610 $aTransversal (geometry). 610 $aTransversality (mathematics). 610 $aTriangle inequality. 610 $aUnit disk. 610 $aUnit sphere. 610 $aUpper and lower bounds. 610 $aVector field. 615 0$aThree-manifolds (Topology) 615 0$aDifferentiable dynamical systems. 676 $a514/.3 700 $aMcMullen$b Curtis T.$061159 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910786510603321 996 $aRenormalization and 3-manifolds which fiber over the circle$9375698 997 $aUNINA