LEADER 04168nam 2200601 a 450 001 9910786463803321 005 20230120011629.0 010 $a1-299-40289-5 010 $a0-08-050347-0 035 $a(CKB)2670000000285269 035 $a(EBL)1160891 035 $a(OCoLC)841906519 035 $a(SSID)ssj0000867211 035 $a(PQKBManifestationID)12459071 035 $a(PQKBTitleCode)TC0000867211 035 $a(PQKBWorkID)10888907 035 $a(PQKB)11236092 035 $a(MiAaPQ)EBC1160891 035 $a(EXLCZ)992670000000285269 100 $a20130423d1976 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMechanics$b[electronic resource] /$fby L.D. Landau and E.M. Lifshitz ; translated from the Russian by J.B. Sykes and J.S. Bell 205 $a3rd ed. 210 $aOxford $cElsevier$d1976 215 $a1 online resource (199 p.) 225 1 $aCourse of theoretical physics ;$vv. 1 300 $aTranslation of Mekhanika by E.M. Lifshitz. 300 $aReprinted 1978, 1982, 1984, 1986, 1987, 1988, 1989, 1991, 1996, 1997, 2003, 2004, 2005. 311 $a0-7506-2896-0 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Mechanics; Copyright Page; Table of Contents; L.D. Landau-a biography; Chapter 1. The Equations of Motion; 1. Generalised co-ordinates; 2. The principle of least action; 3. Galileo's relativity principle; 4. The Lagrangian for a free particle; 5. The Lagrangian for a system of particles; Chapter 2. Conservation Laws; 6. Energy; 7. Momentum; 8. Centre of mass; 9. Angular momentum; 10. Mechanical similarity; Chapter 3. Integration of the Equations of Motion; 11. Motion in one dimension; 12. Determination of the potential energy from the period of oscillation 327 $a13. The reduced mass14. Motion in a central field; 15. Kepler's problem; Chapter 4. Collisions Between Particles; 16. Disintegration of particles; 17. Elastic collisions; 18. Scattering; 19. Rutherford's formula; 20. Small-angle scattering; Chapter 5. Small Oscillations; 21. Free oscillations in one dimension; 22. Forced oscillations; 23. Oscillations of systems with more than one degree of freedom; 24. Vibrations of molecules; 25. Damped oscillations; 26. Forced oscillations under friction; 27. Parametric resonance; 28. Anharmonic oscillations 327 $a29. Resonance in non-linear oscillations30. Motion in a rapidly oscillating field; Chapter 6. Motion of a Rigid Body; 31. Angular velocity; 32. The inertia tensor; 33. Angular momentum of a rigid body; 34. The equations of motion of a rigid body; 35. Eulerian angles; 36. Euler's equations; 37. The asymmetrical top; 38. Rigid bodies in contact; 39. Motion in a non-inertial frame of reference; Chapter 7. The Canonical Equations; 40. Hamilton's equations; 41. The Routhian; 42. Poisson brackets; 43. The action as a function of the co-ordinates; 44. Maupertuis' principle 327 $a45. Canonical transformations46. Liouville's theorem; 47. The Hamilton-Jacobi equation; 48. Separation of the variables; 49. Adiabatic invariants; 50. Canonical variables; 51. Accuracy of conservation of the adiabatic invariant; 52. Conditionally periodic motion; Index 330 $aDevoted to the foundation of mechanics, namely classical Newtonian mechanics, the subject is based mainly on Galileo's principle of relativity and Hamilton's principle of least action. The exposition is simple and leads to the most complete direct means of solving problems in mechanics.The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted. 606 $aMechanics, Analytic 615 0$aMechanics, Analytic. 676 $a530 700 $aLandau$b L. D$01517686 701 $aLifshitz$b E. M$01517687 701 $aSykes$b J. B$01517688 701 $aBell$b J. S$g(John Stewart),$f1928-1990.$028329 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910786463803321 996 $aMechanics$93754898 997 $aUNINA