LEADER 03321nam 22006375 450 001 9910786434203321 005 20230801225823.0 010 $a1-283-85669-7 010 $a3-11-026452-8 024 7 $a10.1515/9783110264524 035 $a(CKB)2670000000309333 035 $a(EBL)893744 035 $a(OCoLC)819508472 035 $a(SSID)ssj0000992347 035 $a(PQKBManifestationID)11563683 035 $a(PQKBTitleCode)TC0000992347 035 $a(PQKBWorkID)10934258 035 $a(PQKB)10311064 035 $a(DE-B1597)172281 035 $a(OCoLC)840438662 035 $a(OCoLC)961673262 035 $a(DE-B1597)9783110264524 035 $a(MiAaPQ)EBC893744 035 $a(EXLCZ)992670000000309333 100 $a20190708d2012 fg 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aCurrent Algebras on Riemann Surfaces $eNew Results and Applications /$fOleg K. Sheinman 210 1$aBerlin ;$aBoston :$cDe Gruyter,$d[2012] 210 4$dİ2012 215 $a1 online resource (164 p.) 225 0 $aDe Gruyter Expositions in Mathematics ;$v58 300 $aDescription based upon print version of record. 311 0 $a3-11-026396-3 327 $tFront matter --$tPreface --$tContents --$tChapter 1. Krichever-Novikov algebras: basic definitions and structure theory --$tChapter 2. Fermion representations and Sugawara construction --$tChapter 3. Projective flat connections on the moduli space of punctured Riemann surfaces and the Knizhnik-Zamolodchikov equation --$tChapter 4. Lax operator algebras --$tChapter 5. Lax equations with a spectral parameter on Riemann surfaces, and their hierarchies --$tChapter 6. Lax integrable systems and conformal field theory --$tBibliography --$tNotation --$tIndex 330 $aThis monograph is an introduction into a new and fast developing field on the crossroads of infinite-dimensional Lie algebra theory and contemporary mathematical physics. It contains a self-consistent presentation of the theory of Krichever-Novikov algebras, Lax operator algebras, their interaction, representation theory, relations to moduli spaces of Riemann surfaces and holomorphic vector bundles on them, to Lax integrable systems, and conformal field theory. For beginners, the book provides a short way to join in the investigations in these fields. For experts, it sums up the recent advances in the theory of almost graded infinite-dimensional Lie algebras and their applications. The book may serve as a base for semester lecture courses on finite-dimensional integrable systems, conformal field theory, almost graded Lie algebras. Majority of results are presented for the first time in the form of monograph. 410 3$aDe Gruyter Expositions in Mathematics 606 $aLie algebras 606 $aRiemann surfaces 610 $aConformal Field Theory. 610 $aCurrent Algebra. 610 $aLax Integrable System. 610 $aRiemann Surface. 615 0$aLie algebras 615 0$aRiemann surfaces 676 $a512.482 700 $aSheinman$b Oleg K.$01575481 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910786434203321 996 $aCurrent Algebras on Riemann Surfaces$93852486 997 $aUNINA