LEADER 01707nam 2200541 450 001 9910502638803321 005 20230619193357.0 010 $a3-030-83454-9 035 $a(CKB)4100000012036825 035 $a(MiAaPQ)EBC6734433 035 $a(Au-PeEL)EBL6734433 035 $a(OCoLC)1269482449 035 $a(PPN)258053798 035 $a(EXLCZ)994100000012036825 100 $a20220624d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMeta-ecosystem dynamics $eunderstanding ecosystems through the transformation and movement of matter /$fFrederic Guichard, Justin Marleau 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dŠ2021 215 $a1 online resource (112 pages) 225 1 $aLecture notes on mathematical modelling in the life sciences 311 $a3-030-83453-0 410 0$aLecture notes on mathematical modelling in the life sciences. 606 $aBiotic communities$xMathematical models 606 $aEcosistemes$2thub 606 $aModels matemātics$2thub 606 $aEcologia espacial$2thub 606 $aDināmica$2thub 608 $aLlibres electrōnics$2thub 615 0$aBiotic communities$xMathematical models. 615 7$aEcosistemes 615 7$aModels matemātics 615 7$aEcologia espacial 615 7$aDināmica 676 $a577.82 700 $aGuichard$b Frederic$0849792 702 $aMarleau$b Justin 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910502638803321 996 $aMeta-ecosystem dynamics$92885459 997 $aUNINA LEADER 02595nam 2200661Ia 450 001 9910785819403321 005 20230421054143.0 010 $a3-11-088974-9 024 7 $a10.1515/9783110889741 035 $a(CKB)2670000000251021 035 $a(EBL)938213 035 $a(SSID)ssj0000559689 035 $a(PQKBManifestationID)11367780 035 $a(PQKBTitleCode)TC0000559689 035 $a(PQKBWorkID)10567135 035 $a(PQKB)10837254 035 $a(MiAaPQ)EBC938213 035 $a(WaSeSS)Ind00010168 035 $a(DE-B1597)39974 035 $a(OCoLC)979605659 035 $a(DE-B1597)9783110889741 035 $a(Au-PeEL)EBL938213 035 $a(CaPaEBR)ebr10597938 035 $a(OCoLC)843635714 035 $a(EXLCZ)992670000000251021 100 $a19940607d1994 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aDirichlet forms and symmetric Markov processes$b[electronic resource] /$fMasatoshi Fukushima, Yoichi Oshima, Masayoshi Takeda 205 $aReprint 2011 210 $aBerlin ;$aNew York $cW. de Gruyter$d1994 215 $a1 online resource (404 p.) 225 0 $aDe Gruyter Studies in Mathematics ;$v19 300 $aDescription based upon print version of record. 311 0 $a3-11-011626-X 320 $aIncludes bibliographical references (p. [369]-388) and index. 327 $tFront matter --$tPart I. Dirichlet forms --$tChapter 1. Basic theory of Dirichlet forms --$tChapter 2. Potential theory for Dirichlet forms --$tChapter 3. The scope of Dirichlet forms --$tPart II. Symmetric Markov processes --$tChapter 4. Analysis by symmetric Hunt processes --$tChapter 5. Stochastic analysis by additive functionals --$tChapter 6. Transformations of forms and processes --$tChapter 7. Construction of symmetric Markov processes --$tA Appendix --$tNotes --$tBibliography --$tIndex 330 $aDirichlet Forms and Symmetric Markov Processes (De Gruyter Studies in Mathematics). 410 3$aDe Gruyter Studies in Mathematics 606 $aMarkov processes 606 $aDirichlet forms 615 0$aMarkov processes. 615 0$aDirichlet forms. 676 $a519.2/33 686 $aSK 820$2rvk 700 $aFukushima$b Masatoshi$f1935-$055765 701 $aOshima$b Yoichi$0736389 701 $aTakeda$b Masayoshi$0736390 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910785819403321 996 $aDirichlet forms and symmetric Markov processes$91455508 997 $aUNINA