LEADER 03587nam 2200673Ia 450 001 9910785816603321 005 20230607231254.0 010 $a3-11-087089-4 024 7 $a10.1515/9783110870893 035 $a(CKB)2670000000251251 035 $a(SSID)ssj0000594915 035 $a(PQKBManifestationID)11360642 035 $a(PQKBTitleCode)TC0000594915 035 $a(PQKBWorkID)10552676 035 $a(PQKB)11260794 035 $a(MiAaPQ)EBC3042173 035 $a(WaSeSS)Ind00009898 035 $a(DE-B1597)56024 035 $a(OCoLC)979748143 035 $a(DE-B1597)9783110870893 035 $a(Au-PeEL)EBL3042173 035 $a(CaPaEBR)ebr10598201 035 $a(OCoLC)922945125 035 $a(EXLCZ)992670000000251251 100 $a20010123d2001 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCondensing multivalued maps and semilinear differential inclusions in Banach spaces$b[electronic resource] /$fMikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca 205 $aReprint 2011 210 $aBerlin ;$aNew York $cW. de Gruyter$d2001 215 $axi, 231 p 225 1 $aDe Gruyter series in nonlinear analysis and applications,$x0941-813X ;$v7 300 $aBibliographic Level Mode of Issuance: Monograph 311 0 $a3-11-016989-4 320 $aIncludes bibliographical references (p. [213]-228) and index. 327 $tFront matter --$tIntroduction --$tContents --$tChapter 1. Multivalued maps: general properties --$tChapter 2. Measures of noncompactness and condensing multimaps --$tChapter 3. Topological degree theory for condensing multifields --$tChapter 4. Semigroups and measures of noncompactness --$tChapter 5. Semilinear differential inclusions: initial problem --$tChapter 6. Semilinear inclusions: periodic problems --$tBibliographic notes --$tBibliography --$tIndex 330 $aThe theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented. 410 0$aDe Gruyter series in nonlinear analysis and applications ;$v7.$x0941-813X 606 $aSet-valued maps 606 $aDifferential inclusions 606 $aBanach spaces 615 0$aSet-valued maps. 615 0$aDifferential inclusions. 615 0$aBanach spaces. 676 $a515.2 686 $aSK 620$2rvk 700 $aKamenskii$b Mikhail$f1950-$01551050 701 $aObukhovskii$b Valeri$f1947-$0479692 701 $aZecca$b P$g(Pietro)$0150335 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910785816603321 996 $aCondensing multivalued maps and semilinear differential inclusions in Banach spaces$93810350 997 $aUNINA