LEADER 02527nam 2200661 a 450 001 9910785633303321 005 20230421054129.0 010 $a3-11-082163-X 024 7 $a10.1515/9783110821635 035 $a(CKB)2670000000235228 035 $a(EBL)3040677 035 $a(SSID)ssj0000559894 035 $a(PQKBManifestationID)11343952 035 $a(PQKBTitleCode)TC0000559894 035 $a(PQKBWorkID)10568394 035 $a(PQKB)10586607 035 $a(MiAaPQ)EBC3040677 035 $a(DE-B1597)41414 035 $a(OCoLC)979747178 035 $a(OCoLC)990671393 035 $a(DE-B1597)9783110821635 035 $a(Au-PeEL)EBL3040677 035 $a(CaPaEBR)ebr10588555 035 $a(CaONFJC)MIL571148 035 $a(OCoLC)922943490 035 $a(EXLCZ)992670000000235228 100 $a19950822d1996 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 13$aAn introduction to Lorentz surfaces$b[electronic resource] /$fby Tilla Weinstein 205 $aReprint 2011 210 $aBerlin ;$aNew York $cWalter de Gruyter$d1996 215 $a1 online resource (227 p.) 225 0 $aDe Gruyter Expositions in Mathematics ;$v22 300 $aDescription based upon print version of record. 311 0 $a3-11-014333-X 320 $aIncludes bibliographical references (p. [201]-204) and index. 327 $tFront matter --$tPreface --$tTable of Contents --$tIntroduction --$tChapter 1 Null lines on Lorentz surfaces --$tChapter 2 Box surfaces, yardsticks and global properties of Lorentzian metrics --$tChapter 3 Conformal equivalence and the Poincaré index --$tChapter 4 Kulkarni's conformal boundary --$tChapter 5 Using the conformal boundary --$tChapter 6 Conformal invariants on Lorentz surfaces --$tChapter 7 Classical surface theory and harmonically immersed surfaces --$tChapter 8 Conformal realization of Lorentz surfaces in Minkowski 3-space --$tBibliography --$tIndex 410 3$aDe Gruyter Expositions in Mathematics 606 $aTopology 606 $aLorentz groups 606 $aGeneralized spaces 615 0$aTopology. 615 0$aLorentz groups. 615 0$aGeneralized spaces. 676 $a530.1/54 686 $aSK 370$2rvk 700 $aWeinstein$b Tilla$f1934-$01462189 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910785633303321 996 $aAn introduction to Lorentz surfaces$93671045 997 $aUNINA